Researchers do not need to be afraid - the availability of fast computers and public domain software libraries such as R and the R package boot, make forays into bootstrap confidence interval estimation reasonably straightforward. R package boot was designed to be general enough to allow the data analyst to simulate the empirical sampling distribution of most estimators (and then some), and to calculate corresponding confidence intervals for that estimator. There are a few tricks to learn when using package boot, but once those small hurdles have been navigated, the lessons learned can be applied more generally to other estimation settings.

R package boot is comprised of a set of functions that are well documented both with theory and examples in the book: Bootstrap Methods and Their Application, by A.C. Davison and D.V. Hinkley (1997). The purpose of this short note is to demonstrate how to approximate nonparametric confidence intervals, using resampling methods, for the generalized linear model (glm) using the R package boot.

We'll start off by simulating a data set from the following probability regression model:

```r
samp.size<-5000
x1 <- rnorm(samp.size)
x2 <- rnorm(samp.size)
x3 <- rnorm(samp.size)
```
x4 <- rnorm(samp.size)

True Model
x0 x1 x2 x3 x4 x1*x2
z <- 1 + 2*x1 + 3*x2 + 4*x3 + 5*x4 + 10*x1*x2
pr <- 1/(1+exp(-z))
y <- rbinom(samp.size,1,pr)

> sim.data.df <- data.frame(y=y,x1=x1,x2=x2,x3=x3,x4=x4,
, x5=x1*x2)
> head(sim.data.df)
y x1 x2 x3 x4 x5
1 0 0.9632201 -1.0871521 -2.0283342 0.5727080 -1.0471668
2 0 2.8738768 -1.4818353 0.1265646 1.9195807 -4.2586121
3 1 -0.5552309 0.8576629 1.1878977 -0.7940654 -0.4762010
4 0 -0.7519217 0.7630796 -0.7534080 -0.6768429 -0.5737761
5 0 0.6789053 -1.6454898 0.5337027 -0.9163869 -1.1171318
6 0 1.4138792 -0.3052833 1.0388294 -0.9189572 -0.4316337
.
.
.

Using the R function `glm` we can estimate the model coefficients using a binomial probability model for the y outcome variable:

```r
glm.fit<-glm(y~x1+x2+x3+x4+x1*x2,
             data=sim.data.df,
             family="binomial")
glm.fit
> glm.fit
```

http://it.unl.edu/benchmarks/issues/2014/10/rss-matters[5/6/16, 10:17:07 AM]
Call: glm(formula = y ~ x1 + x2 + x3 + x4 + x1 * x2, family = "binomial",

data = sim.data.df)

Coefficients:

(Intercept) x1 x2 x3 x4 x1:x2
 1.009 1.973 3.101 4.081 5.113 10.144

Degrees of Freedom: 4999 Total (i.e. Null); 4994 Residual

Null Deviance: 6910

Residual Deviance: 1265 AIC: 1277

R function glm does a reasonably good job of recovering the population regression coefficients – although we did use a very large sample size in comparison to the number of variables in the model.

R package caret provides a useful helper function for displaying kernel density estimated histograms for the predictors as a function of the two level outcome variable y:

library(caret)
featurePlot(x = sim.data.df[,c(2:6)],
 y = as.factor(sim.data.df$y),
 plot = "density",
 scales = list(x = list(relation="free"),
 y = list(relation="free")),
 adjust = 1.5,
 pch = "|",
 layout = c(3, 3),
 auto.key = list(columns = 2))
The resulting plot is returned:

![Plot showing the distribution of features with colors indicating group 0 and 1.](image)

The chosen population coefficients separate the groups with a large difference between the groups (1/0) on the predictor variables. We can calculate the marginal probabilities of the estimated predictors to see how large the average probability change is, in moving from a 50% probability of being in group 1, to the estimated probability of being in group 1, given a unit change in the predictors:

```r
library(arm)
glm.coefs<-coef(glm.fit)
invlogit(glm.coefs) - .50

(Intercept)          x1          x2          x3          x4       x1:x2
0.2327767   0.3779851   0.4569387   0.4833883   0.4940197   0.4999607
```

We have chosen very large predictor effect sizes for the simulation. Essentially, predictors x_4 and x_5 maximally predict the probability of $y=1$ membership: knowledge of predictors x_4 and x_5 move our predicted marginal probability of $y=1$ from .50 (absent the information from x_4 and x_5) to .99 given the information provided by x_4 and x_5.

Now on to the bootstrap confidence intervals: first we need to create a wrapper function that will pass the resampled
data, and their corresponding indices, to the \texttt{glm} function:

```r
glm.coefs<-function (dataset, index)
{
  sim.data.df<-dataset[index,]

  glm.fit <-try(glm(y~x1+x2+x3+x4, +#+x1*x2,
                 data=sim.data.df,
                 family="binomial"), silent = TRUE)

  coefs<-try(coef(glm.fit), silent=TRUE)
  print(coefs)

  return(coefs)
}
```

The vector that contains the indices of the resampled data \texttt{(index)} will be passed to the \texttt{glm} function. Lastly, our wrapper function for \texttt{glm} - \texttt{glm.coefs} - will return the estimated coefficients back to the \texttt{boot} function for tabulation and post-processing. Additionally, we have used the \texttt{try} function so that if a resampled data set fails \texttt{glm} estimation, the \texttt{glm.coefs} and \texttt{boot} will not break out with error, but will instead continue with missing values for the coefficients. Lastly, we have put a print statement within the body of \texttt{glm.coefs}, so that we can monitor the estimated coefficients values as they are being estimated.

Our last bit of R script sends the data and \texttt{glm.coefs} function to \texttt{boot} for processing:

```r
boot.fit<-boot(sim.data.df, glm.coefs, R=1000)
boot.fit

for(ii in 1:length(boot.fit$t0))
{
  cat(rep("\n",5))
  print(names(boot.fit$t0[ii]))
  cat(rep("\n",2))
  print(boot.ci(boot.fit, conf = 0.95, type = c("norm","perc","basic"),index = ii))
}
```
The for loop in this script isn't necessary, but is merely a short-cut for printing out the results of three different types of confidence intervals (CI) for the six estimated parameters (intercept and x1-x6). Notice that we capture the true population parameter for each of the three CI types. This a simply a consequence of having used few predictors, an initial large sample size, and 1000 bootstrap samples in the bootstrap CI estimation.

```r
> boot.fit

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = sim.data.df, statistic = glm.coefs, R = 1000)

Bootstrap Statistics :

    original    bias std. error
  t1*  1.008756 0.007386088  0.08582566
  t2*  1.973487 0.011373649  0.12787464
  t3*  3.101113 0.027926437  0.15442723
  t4*  4.080900 0.027597606  0.17447659
  t5*  5.113291 0.036752067  0.21991954
  t6* 10.144203 0.074247504  0.42935352

> for(ii in 1:length(boot.fit$t0))
  + {
    + cat(rep("\n", 5))
    + print(names(boot.fit$t0[ii]))
    + cat(rep("\n", 2))
    + print(boot.ci(boot.fit, conf = 0.95, type = c("norm","perc","basic"), index = ii))
```
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates

CALL :
boot.ci(boot.out = boot.fit, conf = 0.95, type = c("norm", "perc",
"basic"), index = ii)

Intervals :
Level Normal Basic Percentile
95% (0.833, 1.170) (0.824, 1.164) (0.854, 1.194)
Calculations and Intervals on Original Scale

[1] "x1"

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates

CALL :
boot.ci(boot.out = boot.fit, conf = 0.95, type = c("norm", "perc",
"basic"), index = ii)

Intervals :
Level Normal Basic Percentile
95% (1.711, 2.213) (1.704, 2.191) (1.756, 2.243)
Calculations and Intervals on Original Scale

[1] "x2"

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates

CALL:
boot.ci(boot.out = boot.fit, conf = 0.95, type = c("norm", "perc",
"basic"), index = ii)

Intervals:
Level Normal Basic Percentile
95% (2.771, 3.376) (2.731, 3.369) (2.833, 3.471)

Calculations and Intervals on Original Scale

[1] "x3"

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates

CALL:
boot.ci(boot.out = boot.fit, conf = 0.95, type = c("norm", "perc",
"basic"), index = ii)

Intervals:
Level Normal Basic Percentile
95% (3.711, 4.395) (3.704, 4.369) (3.793, 4.457)

Calculations and Intervals on Original Scale
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates

CALL :

boot.ci(boot.out = boot.fit, conf = 0.95, type = c("norm", "perc",
 "basic"), index = ii)

Intervals :

<table>
<thead>
<tr>
<th>Level</th>
<th>Normal</th>
<th>Basic</th>
<th>Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>95%</td>
<td>(4.646, 5.508)</td>
<td>(4.621, 5.498)</td>
<td>(4.728, 5.606)</td>
</tr>
</tbody>
</table>

Calculations and Intervals on Original Scale

[1] "x1:x2"

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates

CALL :

boot.ci(boot.out = boot.fit, conf = 0.95, type = c("norm", "perc",
 "basic"), index = ii)

[1] "x4"
Intervals:

<table>
<thead>
<tr>
<th>Level</th>
<th>Normal</th>
<th>Basic</th>
<th>Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>95%</td>
<td>(9.23, 10.91)</td>
<td>(9.15, 10.84)</td>
<td>(9.45, 11.13)</td>
</tr>
</tbody>
</table>

Calculations and Intervals on Original Scale

Originally published October 2014 -- Please note that information published in Benchmarks Online is likely to degrade over time, especially links to various Websites. To make sure you have the most current information on a specific topic, it may be best to search the UNT Website - http://www.unt.edu. You can also consult the UNT Helpdesk - http://www.unt.edu/helpdesk/. Questions and comments should be directed to benchmarks@unt.edu.

Contact Us:

University Information Technology
1155 Union Circle #310709
Denton, TX 76203 USA
Voice: 940-565-4068
Fax: 940-565-4060

Visit Us:

Sage Hall, Room 338
http://it.unt.edu/benchmarks/

Email us:

Have questions on content or technical issues? Please contact us.
unt.uit@unt.edu

UNT System:

- UNT Home
- UNT System
- UNT Dallas
- UNT Health Science Center

Site last updated on April 22, 2016

Disclaimer | AA/EOE/ADA | Privacy Statement | Web Accessibility Policy | State of Texas Online | Emergency Preparedness

http://it.unt.edu/benchmarks/issues/2014/10/rss-matters[5/6/16, 10:17:07 AM]