Campus Computing News

Save Time, Money, and Avoid Parking Frustrations Using Videoconference Technology

By Brenda K. Ritz, Videoconference Manager, UNT CLEAR

Are you spending too much time traveling to off campus meetings? Are you located at Discovery Park and frustrated by the lack of parking on the main campus? Did you know that you can meet via videoconference with your colleagues on campus, at the Dallas and Ft. Worth campuses, or almost anywhere in the world?

Read more

Summer Hours

By Claudia Lynch, Benchmarks Online Editor

Summer is here and so are summer hours! Following are the hours for Computing and Information Technology Center-managed facilities as well as other campus facilities for the remainder of the summer.

Read more

Today’s Cartoon

Click on the link above for an information age laugh.
Save Time, Money, and Avoid Parking Frustrations Using Videoconference Technology

By Brenda K. Ritz, Videoconference Manager, UNT CLEAR

Are you spending too much time traveling to off campus meetings? Are you located at Discovery Park and frustrated by the lack of parking on the main campus? Did you know that you can meet via videoconference with your colleagues on campus, at the Dallas and Ft. Worth campuses, or almost anywhere in the world?

UNT faculty, staff and students use the videoconference resources to meet with colleagues, conduct or participate in interviews, and to bring guest lecturers to their classes. Many UNT faculty and staff members have met via videoconference to India, Iceland, Malaysia, and Russia as well as numerous other locations. However, if you just want to meet with colleagues from the main campus to Discovery Park, the Dallas campus or the Health Science Center, we can assist you too!

The University of North Texas Videoconference Network (UNTVN) in the Center for Learning Enhancement, Assessment and Redesign (CLEAR) recently upgraded Chilton Hall Room 245. A 6’ x 10’ wall serves as the projection screen. The wall was painted with a reflective paint by Goo Systems. High definition cameras and the new Tandberg C90 codec were also integrated into the system. Additionally, a ceiling mounted WolfVision Document Camera was installed.

Chilton Hall Room 245
CLEAR also renovated Chilton Hall Room 131 into an executive videoconference room. The room includes a 52” LCD monitor, high definition camera, ceiling mounted document camera, and wireless microphones. Users also have access to a computer or can use a laptop in conjunction with the videoconference.

Chilton Hall Room 131 -- an executive videoconference room

In addition to the videoconference rooms in Chilton Hall and Discovery Park, we have videoconference facilities in the Gateway Building, Mean Green Village, Environmental Education, Science and Technology Building, and the Radio, Television, Film and Performing Arts Building. Videoconference rooms are also available at the UNT Dallas Campus, UNT Health Science Center campus and the Universities Center at Dallas.

And it's usually free!

There is never a charge for the use of the rooms or the technicians when your meeting is affiliated with UNT business. Many connections are established for free. For more information or to schedule your next videoconference, please contact Brenda K. Ritz at 940.369.7877 or ritz@unt.edu.
Summer is here and so are summer hours! Following are the hours for Computing and Information Technology Center-managed facilities as well as other campus facilities for the remainder of the summer. The Helpdesk plans, at this point, to be open their normal hours, including on July 4.

- **Data Management Services** will maintain their normal schedule.
- The **ACS General Access/Adaptive Lab** ([ISB 104](#)) will keep the following hours this summer:
 - Saturday: 10 a.m.-9 p.m.
 - Sunday: 1 p.m.-10 p.m.
 - Monday - Thursday: 9 a.m.-10 p.m.
 - Friday: 9 a.m.-10 p.m.

Hours for Other Campus Facilities

Check out the UNT Shuttle Summer Schedule here: [http://www.unt.edu/transit/routes sched.html](http://www.unt.edu/transit/routes_sched.html)

General Access Labs

- **WILLIS** (normal schedule is 24hr/7 days a week):
 - Maintaining normal schedule through rest of the summer except July 4.

 Special Closings:

 July 4 (Independence Day)

- **College of Information General Access Computer Lab (CI-GACLab)** (B205):

 May 17-August 13

 Open: Monday - Friday: 10 a.m. – 6 p.m.

 Closed: Saturday & Sunday

 Special Closings:

 Semester Break: August 14 - 25

- **MUSIC:**
Summer 5wk1 and Summer 5wk2
Monday–Thursday: 8 a.m.–9 p.m.
Friday: 8 a.m.–5 p.m.
Saturday: 10 a.m.–5 p.m.
Sunday: 1 p.m.–8 p.m.

PACS Computing Center (Chilton Hall):

May 18 - August 13, 2010
Monday–Thursday: 8 a.m.–10 p.m.
Friday & Saturday: 8 a.m.–5 p.m.
Sunday: Noon–10 p.m.

Special Closings:
Semester Break: August 14 - 25

CVAD (formerly SOVA):

Summer 5wk1 and Summer 5wk2
Monday–Friday: 8 a.m.–10 p.m.
Saturday–Sunday: Noon–8 p.m.

The lab will close at 5 p.m. on the last day of each session, and reopen the following Monday.

COE:

Maintain normal hours, except Closed: Aug 14-25

COBA:

Business Lab (Downstairs – BA152)
Monday - Thursday: 8 a.m - 11:50 p.m.
Friday: 8 a.m. - 7:50 p.m.
Saturday: 8 a.m. - 7:50 p.m.
Sunday: Noon - 11:50 p.m.

General Access Lab (Upstairs – BA335)
Monday - Saturday: 8 a.m - 7:50 p.m.
Sunday: Noon - 7:50 p.m.

Curry Hall (Team Lab)
Monday - Thursday: 8 a.m - 11:30 p.m.
Friday & Saturday: 8 a.m. - 7:30 p.m.
Sunday: Noon - 11:30 p.m.

CAS:

GAB 330

10 Week 1 (10W1) - this includes 5 Week 1 (5W1) and 5 Week 2 (5W2) June 7 - August 13:
Monday - Thursday: 8 a.m. – Midnight
Friday: 8 a.m. – 5 p.m.
Saturday: Noon - 8 p.m.
Sunday: Noon - Midnight

Special Closings:
July 4
Semester Break: August 14 - 25

GAB 550

10 Week 1 (10W1) - this includes 5 Week 1 (5W1) and 5 Week 2 (5W2) June 7 - August 13
Open: Monday - Friday: 8 a.m. – 5 p.m.

Closed: Saturday & Sunday

Special Closings:

Semester Break: August 14 - 25

Terrill 220

10 Week 1 (10W1) - this includes 5 Week 1 (5W1) and 5 Week 2 (5W2) **June 7 - August 13**

Monday - Thursday: 8 a.m. – 8 p.m.
Friday: 8 a.m. – 5 p.m.
Saturday: **Closed**
Sunday: **Closed**

Special Closings:

Semester Break: August 14 - 25

Wooten 120

10 Week 1 (10W1) - this includes 5 Week 1 (5W1) and 5 Week 2 (5W2) **June 7 - August 13**

Monday - Thursday: 8 a.m. – 10 p.m.
Friday: 8 a.m. – 5 p.m.
Saturday: **Closed**
Sunday: **Closed**

Special Closings:

Semester Break: August 14 - 25

UNT Dallas Campus - 155A:

Keeping their normal schedule throughout the summer, with the exception of the week of August 16:

August 16-20: Monday - Friday: 7 a.m. – 6 p.m.
August 21: Saturday: 7 a.m. to 5 p.m.

College of Engineering General Access Computer Lab (CENG GACL, englab@unt.edu, Discovery Park, B129, 891-6733)

10 Week 1 (10W1) - this includes 5 Week 1 (5W1) and 5 Week 2 (5W2) **June 7 - August 13**

Open: Monday - Friday: 9 a.m. – 5 p.m.

Closed: Saturday & Sunday

Special Closings:

Semester Break: August 14 - 25

Terminology and schedules for classes offered in the summer has changed in recent years:

SUMmer=Entire Summer Session, 3WK1 = 3-week 1, 8WK1=8-week 1, 5WK1= 5-week 1, 10WK1= 10-week, 5WK2= 5-week 2. All summer sessions will be over by August 13 this year.

- Summer Session 3W1: formerly May Minimester
- Summer Session 5W1: formerly Summer I
- Summer Session 5W2: formerly Summer II.

Remember:

Stay informed!
Faculty/Staff Announcements
announce.unt.edu
Get your alerts fast in case of inclement weather

Visit the Emergency Management website

City of Denton Residents, sign up for the CodeRED Emergency Notification System
Today's Cartoon

From “Today's Cartoon by Randy Glasbergen”, posted with special permission.
For many more cartoons, please visit www.glasbergen.com.
Online Privacy and Other Oxymorons

Facebook has recently been criticized for making it too easy for strangers and businesses to find information about you on line. Facebook is probably the most popular social networking site these days and seems to continue to grow in popularity despite accusations that the service is playing fast and loose with information that only your friends, friends of friends, and multiple associated groups are supposed to know.

Is privacy a thing of the past? Facebook founder Mark Zuckerberg as been accused of not believing in privacy. Google has been accused of spying on people's wireless network base stations as their cars have roamed streets taking pictures of your house. Location-based services like Foursquare and Gowalla let people track your movements or at least tell when you are not at home. And along with these developments are people who are decrying the state of online privacy and blaming Facebook for endangering individual privacy.

Forgive me if this all seems a bit familiar. The issues are the same and only the technology has changed. So, let me offer my rules of Internet privacy:

1. **If you don’t want the world to know about it, DON’T post it on the Internet.**

As I’ve discussed before, this is really a paraphrase of John Quartermann’s advice to "assume permanance and ubiquity." Once something is online, it tends to stay online.

Surprised?

It should come as no surprise by now that information conveyed via a world-wide information network can potentially be made public at any time and in any place. However, it seems that every time a new communications method appears in the virtual world, we forget the previous lessons learned and treat a world-wide public forum as if it were our small private neighborhood.

Perhaps this privacy blindness is part of the culture of the Internet. In the early days, the Internet was like a small private neighborhood, and you got to be familiar with the folks who frequented the mailing lists to which you were subscribed. Even services like Facebook started as small communities, but as we’ve seen, success on the Internet yields a large and global presence.

By the way, this doesn’t let Facebook off the hook. Facebook has changed their privacy settings resulting in more information being more widely visible. They have also explored sharing your brand preferences with your Facebook friends as a form of "social advertising." However, there is a remedy for these activities as well. With a little work, you can customize your Facebook preferences to control how your information is shared, and if you find that to be too difficult, you can delete your account. Deleting your account may seem severe, but it is your one position of power. You don’t have to use Facebook and there are alternatives.

Just remember the rules!

So, the next time you are worried about your privacy on e-mail or Facebook or whatever the next big thing is, also remember the "rules." You don’t have to drop out, but you do need to be aware that any information you put online can potentially leak to a wider audience than you expect, regardless of the privacy controls that may be in place. You may think you are whispering to your group of friends, but you never know when that whisper may become a shout out to the world.
Benchmarks Issue content
Helpdesk FYI

By Jonathan "Mac" Edwards, CITC Helpdesk Manager

Instructions for connecting to Exchange on the iPhone

On the iPhone home screen, go to Settings -> Mail, Contacts, Calendars -> Select the email account to modify, or select Add Account...

If starting from a new account, first select your account type. Select Microsoft Exchange.

In the Email field, type in your email address, ex. first.last@unt.edu. Do not use an email alias as your email address, for example smith@unt.edu.

For the Server field, type in "autodiscover.unt.edu". It is no longer necessary to manually type in your Exchange server. Note: At first the application may not ask for the Exchange server. You will input it later in this case.

In the Domain field, type in "UNT" in all caps.

For the Username be sure to use your EUID, and not an alias or alternate username that may work on other UNT websites.

In the Password field type in your UNT password. When your password expires, your phone will later ask you to retype your password in a pop-up window, so further changing the settings every 120 days will not be necessary.

In the Description field you may name the email account in any manner you would like. For example: "Work Email", "Exchange Account". The default will be the email address you type in earlier.
Select Next - The application will verify your account details with the Exchange server. If any details are incorrect the application will respond at the top of the window with a message saying "Account Verification Failed". If this happens double check your credentials and try again.

If the application stays on the current screen and adds a Server field, type in "autodiscover.unt.edu", then select next.

Once your account details have been verified, it will ask you to select which features you would like to use.

Selecting Mail will sync your email account to the mail application. Selecting Calendars will add your Exchange calendar to your phone. Selecting Contacts will sync you Exchange contact with your phone.

Note: If you select Calendar or Contacts, it will erase any current contacts or calendar entries you currently have in your phone. Also, it will only sync your personal calendar, and not others. Selecting your contacts will not only add your contacts, but all of the people on the Exchange server. In the case of UNT, this is a very large number of faculty and staff.

After selecting which features you would like to use, you can select Done and go back to your home screen.

The new account will be listed in next to any others you may have. Upon selecting the account and viewing the default folders, your phone will contact the Exchange server and begin pulling emails and folders. This may take several minutes to complete on a slow data connection. If on 3G or wifi, this is often done in under one minute.
IRC News

Minutes provided by Susan Richroath Recording Secretary*

The IRC -- unofficially now known as the INFORMATION TECHNOLOGY COUNCIL (ITC) -- is currently undergoing a reorganization, see the May 20, 2008 minutes for more information.**

No IRC/ITC minutes were available for publication this month.

*For a list of IRC Regular and Ex-officio Members click here (last updated 12/12/08). Warren Burggren is now the Chair.

**DCSMT Minutes can be found here.
Categorical Variables in Regression: Implementation and Interpretation

Link to the last RSS article here: Renewing Your MATLAB License -- Ed.

By Dr. Jon Starkweather, Research and Statistical Support Consultant

Use of categorical variables in regression analysis is often avoided due to confusion concerning interpretation. The purpose of this article is to review four strategies for dealing with categorical variables in regression and demonstrate their use and interpretation. The article is arranged in hierarchical fashion, from least complex strategy to most complex strategy, with the exception of criterion coding which is not very complex. By coincidence, this arrangement of topics also appears to reflect frequency of use for these procedures, from most often used to least often used strategies. The four strategies discussed in the article are dummy coding, effects coding, orthogonal coding, and criterion coding (also known as criterion scaling).

All four strategies are used to allow researchers the ability to enter categorical predictor variables into a multiple regression analysis. All four strategies necessitate the creation of one or more variables to reflect the categories of the predictor variable. All four strategies reveal identical R^2. However, the interpretation of regression coefficients and conclusions drawn from them differs across each strategy.

For the demonstration of each strategy, a fictional data set was created consisting of one continuous outcome variable (DV_Score), one categorical predictor variable (IV_Group), and 15 cases (see Table 1). The predictor variable contains three groups; experimental 1 (value label 1), experimental 2 (value label 2), and control (value label 3). The demonstration of these four strategies will assume a functional knowledge of basic regression concepts and the statistical software SPSS. SPSS syntax is given in the Appendix so that the reader may replicate the demonstrations in this article. The discussion that follows will deal with each strategy independently demonstrating its use and appropriate interpretation. Conclusions will close out the article by drawing some comparisons between the four strategies and illustrate the strengths and weaknesses of each.

Dummy Coding

The name dummy coding seems appropriate in the sense that it is the simplest method of coding a categorical variable (Pedhazur, 1997). Dummy coding is used when a researcher wants to compare other groups of the predictor variable with one specific group of the predictor variable. Often, the specific group is called the reference group or category. So, for the example data here, we will compare each of the two experimental groups to the control group; the control group is our reference category. This illustration is used here because it represents a common expression of dummy coding in social science research, the comparison of treatment to control, with the control group being the reference category. It is important to note that dummy coding can be used with two or more categories. Dummy coding in regression is analogous to simple independent t-testing or one-way Analysis of Variance (ANOVA) procedures in that dummy coding allows the researcher to explore mean differences by comparing the groups of the categorical variable. In order to do this with regression, we must separate our predictor variable groups in a manner...
that allows them to be entered into the regression.

To accomplish this, we would create two new ‘dummy’ variables in our data set, labeled dummy 1 and dummy 2 (see Table 2). Each of these new variables is used to represent the presence of membership in a category of the predictor. The dummy 1 variable is used to identify all the members of the experimental 1 group. The dummy 2 variable is used to identify all the members of the experimental 2 group. To represent membership in a group on each of the dummy variables, each case would be coded as 1 if it is a member and all other cases coded as 0. When creating dummy variables, it is only necessary to create \(k - 1 \) dummy variables where \(k \) indicates the number of categories of the predictor variable. All of the categories can be represented without having one dummy variable for each category. This highlights the meaning of the reference category, because it is always coded as 0. Furthermore, if there were only one dummy variable for each category, we would be violating the assumption of no perfect collinearity (Hardy, 1993; see also Kirk, 1995).

At this point, it is necessary to address the importance of choosing a reference category. In the example used here, the reference category is easy to choose and often this is the case. The control group represents a lack of treatment and therefore is easily identifiable as the reference category. The reference category should have some clear distinction. However, much research is done without a control group. In those instances, identification of the reference category is generally arbitrary, but Garson (2006) does offer some guidelines for choosing the reference category. First, using categories such as miscellaneous or other is not recommended because of the lack of specificity in those types of categorizations (Garson). Second, the reference category should not be a category with few cases, for obvious reasons related to sample size and error (Garson). Third, some researchers choose to use a middle category, because they believe it represents the best choice for comparison; rather than comparisons against the extremes (Garson).

Now that we have our dummy variables constructed, we can include them in the regression analysis and interpret the results. In SPSS, the predictor variable would not be entered into the regression and instead the dummy variables would take its place. The results indicate a significant model, \(R^2(2, 12) = 57.17, p < .001 \). The regression model was able to account for 91% of the variance. Table 3 provides unstandardized regression coefficients (\(B \)), intercept (constant), standardized regression coefficients (\(B \)), \(R \), \(R^2 \), and adj.\(R^2 \).

Now, because dummy variables were used to compare experimental 1 (\(M = 5.00, SD = 3.16 \)) and experimental 2 (\(M = 12.00, SD = 3.16 \)) to the control (\(M = 26.00, SD = 3.16 \)), the intercept term is equal to the mean of the reference category (i.e. the control group). Each regression coefficient represents the amount of deviation of the group identified in the dummy variable from the mean of the reference category (Pedhazur, 1997). So, some simple mathematics allows us to see that the regression coefficient for dummy 1 (representing experimental 1) is \(5 - 26 = -21 \). Also, the regression coefficient for dummy 2 (representing experimental 2) is \(12 - 26 = -14 \). All of this results in the regression equation:

\[
\hat{Y} = 26.00 + (-21 \times \text{dummy 1}) + (-14 \times \text{dummy 2}).
\]

Furthermore, we can divide each regression coefficient by its standard error, which is equal to the regression sums of squares degrees of freedom (\(df \)), and arrive at a \(t \)-score which can then be used with the residual sums of squares \(df \) to determine significance. This is indicated in the SPSS output as the significance test for each regression coefficient. Testing for significance of the regression coefficients is identical to running \(t \)-tests comparing the group means, which is essentially what would have been done in post-hoc testing if we had conducted a one-way ANOVA on this data.

Using the regression equation listed above (Equation 1), you arrive at predicted values for each case that are equal to the mean of the category that includes the case as a member. However, this only occurs when you only have dummy variables for one predictor in the model. As the researcher specifies more predictor variables (continuous or categorical) in the model, the clean consistency of the example above evaporates. But, the underlying method and interpretation of dummy coding categorical variables for regression remains. For this reason, dummy coding represents a simple approach for primarily quasi-experimental designs.

Effect Coding

Effect coding is used when the researcher wants to compare categories of the predictor variable to the entire sample, represented by the grand mean of the outcome variable. Effect coding can be used with three or more categories. It is very similar to dummy coding in that we must create \(k - 1 \) new (effect) variables, where \(k \) represents the number of categories of our predictor. Also like dummy coding, with effect coding we must choose a reference category, for the example here the control group is again used. There are no guidelines for choosing the reference category in effect coding, because we are not comparing the other categories to it. However, in effect coding, the reference category will be coded as -1 in all effect variables. Like dummy coding, membership in a category is designated by the code of 1 on the effect variable representing that category and the other categories are coded as 0. The exception to that rule is the reference category which, as mentioned above; is always coded as -1.

To accomplish this, we will create two new variables (see Table 4). Effect 1 represents membership in the experimental 1 category and effect 2 represents membership in the experimental 2 category. All cases coded as -1 represent membership in the control category. In this sense, dummy and effect coding are identical, because only two variables are able to capture all the information contained in our categorical predictor.

Now that we have our effect variables constructed, we can include them in the regression analysis and interpret the
results. Again, in SPSS, the predictor variable would not be entered into the regression and instead the effect variables would take its place. The results indicate a significant model, \(F(2, 12) = 57.17, \ p < .001 \). The regression model was able to account for 91% of the variance. These model summary statistics are identical to the ones for the dummy code example. However, there are differences in the coefficients and how they are interpreted. Table 5 provides unstandardized regression coefficients (\(B \)), intercept (constant), standardized regression coefficients (\(\beta \)), \(R \), \(R^2 \), and adj.\(R^2 \).

Now, because effect variables were used to compare experimental 1 (\(M = 5.00, SD = 3.16 \)), experimental 2 (\(M = 12.00, SD = 3.16 \)), and control (\(M = 26.00, SD = 3.16 \)) to the grand mean (\(GM = 14.33, SD = 9.50 \)), the intercept term is equal to the grand mean of the outcome variable. Each regression coefficient represents the amount of deviation of the group identified in the effect variable from the grand mean (Pedhazur, 1997). So, some simple mathematics allows us to see that the regression coefficient for effect 1 (representing experimental 1) is \(5 - 14.33 = -9.33 \). Also, the regression coefficient for effect 2 (representing experimental 2) is \(12 - 14.33 = -2.33 \). All of this results in the regression equation:

\[
\hat{Y} = 14.33 + (-9.33 \times \text{effect 1}) + (-2.33 \times \text{effect 2}).
\]

But, it is important to distinguish what those regression coefficients represent. Effect coding is so called, because each regression coefficient is the deviation of a given category from the grand mean. Pedhazur (1997) specifies this more clearly as “the deviation of a given treatment mean from the grand mean is defined as its effect” (p. 363). Recall that the general linear model specifies that each individual’s score on an outcome variable is a function of three elements; the grand mean plus the treatment effect for a given variable (or category in this case), plus error.

Using the regression equation listed above (Equation 2), you arrive at predicted values for each case that are equal to the mean of the category that includes the case as a member. The predicted values are the same as those for the first regression equation (Equation 1). Therefore, we can calculate the error for each case by subtracting the predicted score from the actual score. Using the resulting error term, or residual as it is called in the context of regression; we can place each case in the general linear model and confirm the treatment effect as the same as the regression coefficients for a given category. Because of this isolation of treatment effect, effect coding is usually reserved for experimental designs.

At first, it appears we have lost the information for the reference category. However, the effect of the control category is defined the same way as the effect of the other two categories. It is the deviation of the identified group mean (control in this case) from the grand mean. So, using the control condition mean of 26 and subtracting the grand mean of 14.33, we get a treatment effect of 11.67. It is important to keep in mind that the reference category in effect coding for regression is never included in the regression equation, but is included in the general linear model.

Remember that linear regression and ANOVA procedures are members of the general linear model family of analyses. The link between linear regression and ANOVA is mentioned here, because the significant \(R^2 \) displayed above in our model summary indicates that there is a significant difference among the three category means and the grand mean. As with ANOVA, the omnibus \(F \) tells us there is a significant difference, but further evaluation is necessary to locate where the differences lie. SPSS addresses this with tests of significance for each regression coefficient; essentially the regression coefficient is divided by the standard error of that coefficient to arrive at a \(t \)-score as mentioned previously. However, as Pedhazur (1997) reports “these tests are generally not used in the present context, as the interest is not in whether a mean for a given treatment or category differs significantly from the grand mean but rather whether there are statistically significant differences among the treatment or category means” (p. 367).

Orthogonal Coding

Orthogonal coding is used when a researcher wants to explore specific theory driven hypotheses about group differences among categories of a predictor variable. Orthogonal is defined as having absolutely no relationship. “If two variables are orthogonal, knowing the value of one variable gives no clue as to the value of the other; the correlation between them is zero” (Tabachnick & Fidell, 2001, p. 8). Orthogonal coding allows the researcher to specify coding values for testing specific categories against one another or a combination of categories. Essentially, “comparisons are orthogonal when the sum of the products of the coefficients for their respective elements is zero” (Pedhazur, 1997, p. 376). Like the two strategies mentioned above, orthogonal coding necessitates the creation of \(k - 1 \) new (orthogonal) variables, where \(k \) indicates the number of categories of our predictor variable. However, we have much more flexibility when coding values for our two new variables (orthog1 & orthog2) than in the previous two strategies. That flexibility is available because “for \(k \geq 3 \) means, there are an infinite number of sets of orthogonal contrasts, but each set contains only \(k - 1 \) orthogonal contrasts” (Kirk, 1995, p. 117). For our example here, the first contrast compares the experimental 1 category to experimental 2 (orthog1) and the second contrast compares the combination of experimental 1 and 2 to the control (orthog2). It is important to note that these two comparisons represent one set of possible comparisons among an infinite number of sets. However, we must choose our coding values in such a way as to stay within the limits of orthogonality.

In order to do this, we must first identify codes for each comparison that are mutually exclusive and represent the comparisons we are attempting to investigate. So, for the first comparison, we chose codes to represent the comparison of the experimental 1 category (coded as -1) to the experimental 2 category (coded as 1), while ignoring the control category (coded as 0). For the second comparison, we chose codes to represent the comparison of the experimental 1 and 2 categories (both coded as 1) to the control category (coded as -2). The resulting code values
variable values (actual dependent variable values) and the predicted values by the sum of the squared predicted
the grand mean (\(\text{GM} \)). This will always be the case with criterion coding, because the regression coefficient is 1.0 and
Next, notice that because the criterion coded variable was used and it consisted of the means for each category; the
categories of the predictor and 15 cases. Therefore, the correct
corrected, the result is the same as all three mentioned above.
So, the researcher can correctly calculate the
coefficients (\(\beta \)), intercept (constant), standardized
regression coefficients (\(\beta \)), \(R^2 \), and adj.\(R^2 \). The resulting regression equation is:
\[
\hat{Y} = 14.33 + (-3.50 * \text{orthog1}) + (-5.83 * \text{orthog2}).
\] (3)
Equation 3 yields predicted values for each case that are equal to the mean of the category that includes the case as a member. Again these predicted values are the same in the two previous examples.
Now, because we used orthogonal code values, the means of both orthogonal variables are zero, which in turn ensures that the intercept term is equal to the grand mean of the outcome variable (\(\text{GM} = 14.33 \)). In this regard, effect coding and orthogonal coding are the same, but that is where the similarity stops. SPSS produces regression coefficients, but they are not of particular interest as is shown below. The regression coefficient for each orthogonal variable is calculated by dividing the sum of the squared products for the orthogonal variable and the outcome variable by the sum of the squared orthogonal variable values. However, the real value of orthogonal coding is that "the statistical tests of the regression coefficients can be interpreted as supporting or not supporting ones research hypotheses" (Henderson, 1998, p. 2). The research hypotheses referred to in the previous quote are the hypotheses that dictated which orthogonal comparisons were made. Therefore, according to our results, it appears that there was a significant difference between the two experimental categories, \(t(12) = -3.50, p = .004 \). Also, there was a significant difference between the combination of the two experimental categories and the control category, \(t(12) = -10.10, p < .001 \). Recall that the \(t \)-test for each regression coefficient is based upon the \(t \)-score provided when dividing the regression coefficient by its standard error.
One other interesting point is that because the orthogonal variable means’ are zero, the standardized coefficients are the correlations of each orthogonal variable and the outcome variable. When these standardized coefficients are squared and summed the result is \(R^2 \), as would be expected in this example because; there are no other variables in the model.

Criterion Coding

Criterion coding is unique among the four strategies demonstrated here for a variety of reasons. First, when criterion coding, it is only necessary to create one new coded variable; criterion 1 for our example. The coded value for each case on the criterion variable is the mean of the category that includes the case as a member. Criterion coding was originally developed by Beaton (as cited in Schumacker & Williams, 1993), primarily as a way of decreasing the associated problems with large numbers of categorical predictors and/or categories among them which necessitated large numbers of coding variables. Schumacker and Williams also mention that other coding methods often necessitate exclusion of cases where data is missing from the categorical predictor, which is not necessary with criterion coding. Finally, Pedhazur (1997) states that criterion coding can also be utilized with ordinal variables.

Returning to our example, recall the means of each category from above; experimental 1 (\(M = 5.00, \text{SD} = 3.16 \)), experimental 2 (\(M = 12.00, \text{SD} = 3.16 \)), and control (\(M = 26.00, \text{SD} = 3.16 \)). Using the mean of each category, we create the criterion variable (criterion 1; see Table 8).

Now that we have our criterion variable constructed, we can include it in the regression analysis and interpret the results. Again, in SPSS, the predictor variable would not be entered into the regression and instead the criterion variable would take its place. Notice that we are now dealing with bivariate regression, this will have implications below. The results indicate the regression model was able to account for 91% of the variance. The values for \(R \), and \(R^2 \) are identical to the ones for all three examples above. However, there are differences in the other summary statistics, as well as the coefficients and how they are interpreted. Table 9 provides unstandardized regression coefficients (\(\beta \)), intercept (constant), standardized regression coefficients (\(\beta \)), \(R^2 \), and adj.\(R^2 \).

First, the regression summary table in SPSS is incorrect. The table indicates that the model generated is significant, \(F(1, 13) = 123.86, p < .001 \). However, the \(df \) are incorrect which substantially increases the \(F \) value. Note, because criterion coding was used, the software only accounts for a single \(df \) for the regression sum of squares and accounts for 13 \(df \) for the residual sum of squares. Luckily the software reports the correct values for all the sum of squares. So, the researcher can correctly calculate the \(F \) ratio by using the correct \(df \), recall that we are still utilizing three categories of the predictor and 15 cases. Therefore, the correct \(df \) are 2 and 12 for regression and residual, respectively. Utilizing the correct \(df \), the resulting model is still significant, \(F(2, 12) = 57.17, p < .001 \). Notice that once corrected, the result is the same as all three mentioned above.

Next, notice that because the criterion coded variable was used and it consisted of the means for each category; the intercept value is 0. This will always be the case with criterion coding, because the regression coefficient is 1.0 and the grand mean (\(\text{GM} = 14.33 \)) is equal to the mean of our newly created criterion coded variable. This too will always be the case, because the regression coefficient is produced by dividing the sum of the cross products of criterion variable values (actual dependent variable values) and the predicted values by the sum of the squared predicted
values \(\frac{\sum y \bar{y}}{\sum \bar{y}^2}\). In criterion coding, the sum of the cross products mentioned above and the sum of the squared predicted values are the same. This in turn is because the equations associated with each value will contain identical values for all the essential elements; namely the sum of predicted values squared \(\sum \bar{y}^2\) will be the same as multiplying the sum of actual dependent variable values by the sum of predicted values \(\sum y \bar{y}\). The resulting regression equation is:

\[
\hat{y} = 0.00 + (1.00 * \text{criterion 1})
\] (4)

Not surprisingly, Equation 4 yields predicted values for each case that are equal to the mean of the category that includes the case as a member, which are the same predicted values as those produced in all three examples above.

Conclusions

Four strategies were demonstrated as methods for coding a categorical predictor variable for inclusion in linear regression. Each offers specific utility for researchers implementing quasi-experimental designs and true experimental designs. It is important to note that each of these strategies resulted in identical values for model summary statistics. This would not be the case if multiple predictor variables were included in the model. Each of these strategies is compatible with multiple predictors, either continuous or categorical, which highlights the importance of understanding the differences associated with each strategy. Namely, the interpretation of regression coefficients differs across each strategy. It must also be noted that common regression practices using software dictate having the software compute (or save, as is the case with SPSS) the predicted values and error terms (standardized and unstandardized) for each case. The syntax included in the Appendix has the necessary elements to do this, and if used; will result in identical values for each case across the four strategies. This leads to a cautionary note about the use of categorical variables in regression. Given the preceding comment about the predicted values being the same across strategies, it should be clear that regression works best with continuous rather than categorical variables. However, if multiple predictors are included in the model, the use of categorical predictors becomes more precise. Because, instead of predicting the mean of each category (which was represented here due to only having one predictor), the predicted values resulting from the model will be based on all the variables included in the model.

Until next time; won’t you buy me a Mercedes Benz...?

References

Tables

Table 1

<table>
<thead>
<tr>
<th>Case</th>
<th>DV Score</th>
<th>IV Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 2

Dummy Coded Example Data

<table>
<thead>
<tr>
<th>Case</th>
<th>DV_Score</th>
<th>IV_Group</th>
<th>dummy1</th>
<th>dummy2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>14</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>22</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>26</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>28</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>30</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3

Summary of Regression Analysis with Dummy Coded Variables

(N = 15)

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>SE B</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>26.00</td>
<td>1.41</td>
<td></td>
</tr>
<tr>
<td>Dummy1</td>
<td>-21.00</td>
<td>2.00</td>
<td>-1.08*</td>
</tr>
<tr>
<td>Dummy2</td>
<td>-14.00</td>
<td>2.00</td>
<td>-0.72*</td>
</tr>
</tbody>
</table>

Note. $R = .95, R^2 = .91, \text{adj.}R^2 = .89.$

*p < .05.

Table 4
Effect Coded Example Data

<table>
<thead>
<tr>
<th>Case</th>
<th>DV Score</th>
<th>IV Group</th>
<th>effect1</th>
<th>effect2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>14</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>22</td>
<td>3</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>3</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>13</td>
<td>26</td>
<td>3</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>14</td>
<td>28</td>
<td>3</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>15</td>
<td>30</td>
<td>3</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Table 5

Summary of Regression Analysis with Effect Coded Variables

(N = 15)

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>$SE B$</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>14.33</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>Effect1</td>
<td>-9.33</td>
<td>1.16</td>
<td>-0.83*</td>
</tr>
<tr>
<td>Effect2</td>
<td>-2.33</td>
<td>1.16</td>
<td>-0.21</td>
</tr>
</tbody>
</table>

*Note. $R = .95$, $R^2 = .91$, adj.$R^2 = .89$.
p < .05.

Table 6

Orthogonal Coded Example Data

<table>
<thead>
<tr>
<th>Case</th>
<th>DV Score</th>
<th>IV Group</th>
<th>orthog1</th>
<th>orthog2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>2</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>2</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>2</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>14</td>
<td>2</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>16</td>
<td>2</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>22</td>
<td>3</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>3</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>13</td>
<td>26</td>
<td>3</td>
<td>0</td>
<td>-2</td>
</tr>
</tbody>
</table>
Table 7

Summary of Regression Analysis with Orthogonal Coded Variables

(N = 15)

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>SE B</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>14.33</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>Orthog1</td>
<td>-3.50</td>
<td>1.00</td>
<td>-.31*</td>
</tr>
<tr>
<td>Orthog2</td>
<td>-5.83</td>
<td>0.58</td>
<td>-.90*</td>
</tr>
</tbody>
</table>

Note: $R = .95$, $R^2 = .91$, adj.$R^2 = .89$.

*p < .05.

Table 8

Criterion Coded Example Data

<table>
<thead>
<tr>
<th>Case</th>
<th>DV Score</th>
<th>IV Group</th>
<th>criterion1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>14</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>16</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>11</td>
<td>22</td>
<td>3</td>
<td>26</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>3</td>
<td>26</td>
</tr>
<tr>
<td>13</td>
<td>26</td>
<td>3</td>
<td>26</td>
</tr>
<tr>
<td>14</td>
<td>28</td>
<td>3</td>
<td>26</td>
</tr>
<tr>
<td>15</td>
<td>30</td>
<td>3</td>
<td>26</td>
</tr>
</tbody>
</table>

Table 9

Summary of Regression Analysis with Criterion Coded Variable

(N = 15)

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>SE B</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>0.00</td>
<td>1.51</td>
<td></td>
</tr>
<tr>
<td>Criterion1</td>
<td>1.00</td>
<td>0.09</td>
<td>-0.72*</td>
</tr>
</tbody>
</table>

Note: $R = .95$, $R^2 = .91$, adj.$R^2 = .89$.

*p < .05.

Appendix
SPSS Syntax

ONESHOT

DV_Score BY IV_Group
/STATISTICS DESCRIPTIVES HOMOGENEITY
/MISSING ANALYSIS
/POSTHOC = SCHEFFE ALPHA(.05).

comment: Dummy Coding Example.

REGRESSION

/DESCRIPTIVES MEAN STDDEV CORR SIG N
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA CHANGE
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT DV_Score
/METHOD=ENTER Dummy1 Dummy2
/SAVE PRED ZPRED RESID ZRESID .

comment: Effect Coding Example.

REGRESSION

/DESCRIPTIVES MEAN STDDEV CORR SIG N
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA CHANGE
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT DV_Score
/METHOD=ENTER Effect1 Effect2
/SAVE PRED ZPRED RESID ZRESID .

comment: Orthogonal Coding Example.

REGRESSION

/DESCRIPTIVES MEAN STDDEV CORR SIG N
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA CHANGE
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT DV_Score
/METHOD=ENTER Orthog1 Orthog2
/SAVE PRED ZPRED RESID ZRESID .

comment: Criterion Coding Example.
/DEPENDENT DV_Score
/METHOD=ENTER Criterion1
/SAVE PRED ZPRED RESID ZRESID .
Benchmarks Issue content

RSS
Staff Activities

Transitions

New Employees:

- **Jeremiah Sanders**, Student Assistant Telecommunications Services (part-time).
- **Harrison Wood**, IT Specialist, Information Security.
- **Stephen Lane**, CSS Tech, Classroom Support Services (part-time).

Changes, Awards, Recognition, Publications, etc.

Service to UNT

The [May 17 issue](http://it.unt.edu/benchmarks/issues/2010/06/staff-activities) of *InHouse* recognized Janice Madlock, IT Programmer Analyst II, CITC Infrastructure and Technical Services, for her 30 years of service to UNT. Janice's husband, Paul, was also recognized for his 30 years of service to the University. He works in Facilities and Construction. Congratulations!

Fun Fact Winners

- Continuing the CITC tradition, we have some more *InHouse* prize winners. Congratulations to Sandra Holler, Administrative Coordinator, Budget & Employee Services. She was a winner in the June 14 *InHouse* prize giveaway.