IN THIS ISSUE...

<table>
<thead>
<tr>
<th>GENERAL INFORMATION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Bulletin Board Service Available Over the LAN</td>
<td>1</td>
</tr>
<tr>
<td>Proposition 2 Considerations for FY88</td>
<td>2</td>
</tr>
<tr>
<td>PHOENIX Upgraded</td>
<td>2</td>
</tr>
<tr>
<td>POWS 1.2 Is Now Available</td>
<td>2</td>
</tr>
<tr>
<td>New Utility on MUSIC</td>
<td>3</td>
</tr>
<tr>
<td>Super Computer User's Group Forming</td>
<td>4</td>
</tr>
<tr>
<td>New Consultant Hired</td>
<td>4</td>
</tr>
<tr>
<td>It's Userid Request Time Again</td>
<td>4</td>
</tr>
<tr>
<td>Aman Presents Papers</td>
<td>4</td>
</tr>
<tr>
<td>ICPSR Summer Program in Quantitative Methods</td>
<td>4</td>
</tr>
<tr>
<td>National Conference on Educational Computing Hosted by NTSU Department</td>
<td>5</td>
</tr>
<tr>
<td>Departmental Swap & Sell</td>
<td>5</td>
</tr>
<tr>
<td>BENCHMARKS Forum</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MICROCOMPUTERS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version 2.0 of SPSS PC+ is Here</td>
<td>6</td>
</tr>
<tr>
<td>Multiple Range Tests for Complex Designs Using ONEWAY</td>
<td>6</td>
</tr>
<tr>
<td>Choosing a Desktop Publishing System</td>
<td>8</td>
</tr>
<tr>
<td>Micro-Tips</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VAX COMPUTER CLUSTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAX File Protections</td>
<td>13</td>
</tr>
<tr>
<td>CPU Upgrade</td>
<td>13</td>
</tr>
<tr>
<td>VAXcluster Usage Statistics</td>
<td>14</td>
</tr>
<tr>
<td>VAX Notes</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADMINISTRATIVE INFORMATION SYSTEMS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROJECT EAGLE: The NTSU and GTE Voice Response Project</td>
<td>16</td>
</tr>
<tr>
<td>Wanted: Telex Terminals</td>
<td>16</td>
</tr>
<tr>
<td>Production Services Group Formed</td>
<td>16</td>
</tr>
<tr>
<td>Transitions</td>
<td>17</td>
</tr>
<tr>
<td>Vacant Positions</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPUTER SERVICES</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mainframe Performance Statistics</td>
<td>18</td>
</tr>
<tr>
<td>Disk Backup Schedules</td>
<td>20</td>
</tr>
<tr>
<td>ACADemic (NAS) Program Hit Parade</td>
<td>21</td>
</tr>
</tbody>
</table>
SERVICES AVAILABLE TO USERS OF THE NTSU COMPUTING FACILITIES

The NTSU Computing Center is located in the Information Sciences Building (ISB), Room 119. Phone Numbers:
- Computing Center: (817) 565-2324
- Help Desk: (817) 565-4050
- Graphics Lab: (817) 565-3479
- ISB I/O Area: (817) 565-3890
- BA I/O Area: (817) 565-2350

All personnel listed below can be contacted either by calling the Computing Center or by sending them electronic mail on MUSIC/SP (ID-codes follow each name. All IDs are on BITNET node NTSMUSIC).

BENCHMARKS - Claudia Lynch (AS04)
Information & ID-Codes; Disk Space Problems - Carolyn Goodman (AA03)
Statistical/Research Support - George Morrow (AS01), Scott Barber (AC10), Claudia Lynch (AS04), Jim Aman (AC29)
Academic ADABAS/COMPLET - Sean Widmer (AC38)
CRSP & COMPUSTAT Problems - George Morrow (AS01)
Student Programming Problems - CSCI Dept., GAB Room 542A; BCIS Dept., BA Room 152
Problems with SCL, Passwords, or Operating Systems; or Communication/Terminal Problems - Help Desk
Data Entry; Test Scoring & Analysis - Betty Grise
Administrative Applications - Coy Hoggard
Printout Retrieval - ISB or BA I/O Operators

DIALLING UP NTSU COMPUTERS OVER THE TELEPHONE

Phone numbers for the Local Area Network (LAN) are:
- 300/1200 BAUD: (817) 565-3300; 3499
- 300 BAUD: D/FW METRO 429-6006
- 1200 BAUD: D/FW METRO 429-9314

The numbers that will accept either 300 or 1200 baud communications have an autobaud feature that requires you to hit the <RETURN> key repeatedly so that the receiving modem can determine the appropriate baud rate. When you have established a communications link, the # prompt will appear on your screen and you can enter one of following CALL commands to connect with the computer of your choice.

CALL 8040 connects with the NAS/8083 (supports line editing or PCWS). Operating environments available are: MUSIC/SP, VM/CMS.

CALL 3270 connects with the NAS/8083 through a 3270 protocol converter (supports full-screen editing). Operating environments available are: MUSIC/SP, VM/CMS, ADABAS/COMPLET, PHOENIX

CALL DEC connects with the VAXcluster (VMS, Unix)
CALL 780 connects with the Research VAX (Unix)
CALL 3000 connects with the Libraries' HP-3000 (Bibliographic data base).
CALL 6800 connects with the NBI (Unix)

HOURS FOR NTSU COMPUTER ACCESS AREAS: SPRING 1988*

<table>
<thead>
<tr>
<th>Location</th>
<th>Times</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computing Center RJE</td>
<td>Noon-Midnight</td>
<td>Sunday</td>
</tr>
<tr>
<td></td>
<td>7 a.m.-Midnight</td>
<td>Monday</td>
</tr>
<tr>
<td></td>
<td>7 a.m., Tuesday-Midnight, Saturday</td>
<td>Tuesday-Saturday</td>
</tr>
<tr>
<td></td>
<td>(Open 24 hours/day)</td>
<td></td>
</tr>
<tr>
<td>ISB 110 Terminal Area</td>
<td>2-10 p.m.</td>
<td>Sunday</td>
</tr>
<tr>
<td></td>
<td>7:30 a.m.-Midnight</td>
<td>Monday-Thursday</td>
</tr>
<tr>
<td></td>
<td>7:30 a.m.-6 p.m.</td>
<td>Friday</td>
</tr>
<tr>
<td></td>
<td>9 a.m.-6 p.m.</td>
<td>Saturday</td>
</tr>
<tr>
<td>College of Business</td>
<td>Noon-11:45 p.m.</td>
<td>Saturday, Sunday</td>
</tr>
<tr>
<td></td>
<td>8:15 a.m.-11:45 p.m.</td>
<td>Monday-Thursday</td>
</tr>
<tr>
<td></td>
<td>8:15 a.m.-7:45 p.m.</td>
<td>Friday</td>
</tr>
<tr>
<td>GAB 550C</td>
<td>2 p.m.-Midnight</td>
<td>Sunday</td>
</tr>
<tr>
<td></td>
<td>8 a.m.-Midnight</td>
<td>Monday-Thursday</td>
</tr>
<tr>
<td></td>
<td>8 a.m.-5 p.m.</td>
<td>Friday</td>
</tr>
<tr>
<td></td>
<td>2-8 p.m.</td>
<td>Saturday</td>
</tr>
<tr>
<td>Graphics Lab</td>
<td>Noon-10 p.m.</td>
<td>Sunday</td>
</tr>
<tr>
<td></td>
<td>8 a.m.-11 p.m.</td>
<td>Monday-Thursday</td>
</tr>
<tr>
<td></td>
<td>8 a.m.-8 p.m.</td>
<td>Friday</td>
</tr>
<tr>
<td></td>
<td>Noon-5 p.m.</td>
<td>Saturday</td>
</tr>
</tbody>
</table>

*Hours may vary. Check MUSIC/VAX News and/or posted schedules for exceptions.

Unless otherwise noted, articles or information in BENCHMARKS may be reproduced for nonprofit purposes provided the publication and issue are fully acknowledged.
New Bulletin Board Service Available Over the LAN

By Scott Barber (AC10@NTSVUAX) and Billy Barron (BILLY@NTSVUAX)

There is a new bulletin board service (BBS) available over the Local Area Network. It is called the University of North Texas BBS and it has the potential to provide valuable benefits to a wide range of people. The UNT BBS is capable of supporting such services as electronic mail, public message posting, discussions on an infinite range of topics (computer-or non-computer-related), and file uploading and downloading. Although it runs on the VAXcluster, you do not need an account on the VAX to use the BBS.

The creation of this BBS fulfills a long term wish by the Academic Computing Services staff for a BBS service for the campus community. In considering the appropriate hardware and software for this BBS, it was determined that simultaneous access by multiple users would be important enough to rule out a microcomputer-based system. With this in mind, we began looking for BBS software to run on the VAXcluster.

Looking for BBS software proved very frustrating. It was difficult to find software that supported most of the features that we wanted, such as support for the Kermit file transfer protocol. This capability is essential for providing binary file transfer (e.g., MS-DOS .COM, .EXE, and .ARC files) over the LAN.

After a long and unproductive search, it was decided that we would write our own BBS software. With typical enthusiasm, James Shoffit, Billy Barron, Lucia Young and Dwayne Springfield (all of whom were VAX operators at the time) took on the task. They wrote the BBS in Pascal, and learned a lot about VMS file locking along the way.

The features of the BBS they created include:
- User-to-user Mail
- Conferences
- ASCII and Kermit protocol file transfers
- Bulletins
- Questionnaires
- Full Screen Editing
- Several Utilities

After a few months of testing, the BBS is now available for public use. While this board may not support some of the features that users of the latest microcomputer BBS' are used to, we hope that it will provide the basic functions of public (and private) discussion, postings of items of public interest, and the reliable and efficient exchange of good public domain and shareware software.

If you plan to use a microcomputer for signing on to the BBS, you should set up your communications software parameters to the following values. (Phone numbers for calling the LAN are on page 1 of this Benchmarks.)

WORD LENGTH (Also known as DATA BITS or CHARA-CTER BITS) - 8
STOP BITS - 1
PARITY - NONE (if not possible, use WORD LENGTH = 7 with EVEN parity, but you will be unable to use Kermit)
DUPLEX - FULL

FLOW CONTROL - XON/XOFF (Also known as the handshake character. If you communications software requests a decimal value for handshaking, use 17).

There are two different ways to sign on to the BBS, as illustrated below. The text that you are supposed to type is shown in bold face. If you have any trouble using the BBS, please call the Help Desk (565-4050) for assistance.

1. From the LAN:

 #ECHO OFF
 #CALL DEC

 VAX/VMS Cluster (2 VAX-11/785 CPUs)
 -NTVAXB-
 North Texas State University, Denton, TX
 Username: BBS

 Welcome to the University of North Texas BBS
 Please log in. Use your REAL first and last names.
 Enter your first name:

2. From your VAX account:

 $ BBS
 VAX/VMS Cluster (2 VAX-11/785 CPUs)
 -NTVAXB-
 North Texas State University, Denton, TX
 Username: BBS

 Welcome to the University of North Texas BBS
 Please log in. Use your REAL first and last names.
 Enter your first name:
Proposition 2
Considerations for FY89

By Stanley Sawyer, Planning and Budgeting Assistant to the Associate Vice President for Computing at NTSU and TCOM

In preparation and review for the FY89 Computing Center budget, two changes have occurred that could affect departmental FY89 Proposition 2 or operating budgets. These changes are discussed below.

First, the Computing Center has been funded for and will provide a central maintenance contract for all Sytek communications equipment, Telix terminals, and associated communications control units. Therefore, departments should not need to budget for maintenance for these items. When purchasing new units, the purchase order should include the maximum allowable maintenance (usually two years), and the Computing Center should be notified, so the equipment can be included in subsequent maintenance contracts.

Second, the Computing Center will not renew the maintenance contract on Diablo printers in September, 1988. We feel that the Diablo printer technology has been effectively replaced by modern Epson type printers maintained by the Microcomputer Maintenance Shop and/or Laser printers now on State contract. Individual departments will need to make arrangements to obtain maintenance for Diablo printers, or replace them with new, more cost effective dot matrix or laser printers.

If you have any questions about the above changes, feel free to call the Computing Center (565-2324) for further information.

PHOENIX Upgraded

The PHOENIX Computer Based Training system has been upgraded to Release 6.1A.

PCWS 1.2 is Now Available

By Philip Baczewski - MUSIC Time-share Coordinator (AC12@NTSMUSIC)

What is PCWS?
An upgraded version of Personal Computer Workstation (PCWS) is now available for use with MUSIC/SP at North Texas State University. PCWS is a microcomputer communications package licensed to NTSU by IBM and McGill University. PCWS provides full-screen terminal emulation and file transfer facilities especially tailored to the MUSIC/SP operating system. The new PCWS (version 1.2) has been enhanced to include a keystroke redefinition facility, VT102/VT52 terminal emulation, a reorganized and extended set-up facility, a new help facility, and other new features which are further detailed later in this article.

The minimum requirements for running PCWS are:
- An IBM Personal Computer, XT, Jr., Convertible, or AT model or compatible with at least 192K bytes of memory.
- A Monochrome, Color, or Enhanced Color Display capable of displaying 80 columns of text.
- PC-DOS or MS-DOS version 2.0 or greater.
- One 360K floppy disk drive or one 360K floppy disk drive and a hard disk.
- An asynchronous communications adapter or internal modem.

How Can I Get a Copy of PCWS 1.2?
To receive a copy of PCWS 1.2, bring a formatted 5 1/4 inch floppy diskette to the Computing Center Offices (ISB 119). Your diskette will be exchanged for one already containing the PCWS 1.2 files. You will also be given a handout entitled "Introduction to Personal Computer Workstation (PCWS)."

Users who already have a copy of PCWS 1.1, may down-load the files for PCWS 1.2 by following the procedure outlined below.

NOTE: The PCWS 1.2 files occupy about 240K of disk space. Downloading these files at 1200 baud will take at least one hour's time. On-Campus users with direct access to a 9600 baud SYTEK LAN modem can down-load these files in considerably less time (15 minutes or less). Downloading to a floppy diskette will generally take more time than to a hard disk. Users with only 300 baud access should NOT down-load these files, but instead use the above procedure to obtain a copy from the Computing Center.

1. Users with a hard disk should create a new subdirectory to contain the PCWS 1.2 files. (for example: MKDIR PCWS12)
 Users without a hard disk should format a new 5 1/4 inch floppy diskette.
2. Start PCWS and connect to MUSIC in your usual manner.
3. Users with a hard disk should make the new subdirectory the default directory. For example:
 Press <ALT> <Q> (Return to DOS)
 CD/PCWS12 (Make PCWS12 the Current Directory)
 /PCWS/TERM (Execute the TERM program to return to PCWS)
 Users without a hard disk should remove their PCWS diskette from the default drive and insert the newly formatted diskette.
4. From "Go mode in TERM, type XTPC PCWS/LIST to begin down-loading these files.
 Once all files have been successfully down-loaded, you can run PCWS 1.2 from its new directory or diskette in
the same manner as previous versions (type CLM to load the Communications Line Monitor and then type TERM to start the terminal program).

How Can I Get More Information on PCWS 1.2?
In addition to the Computing Center handout, "Introduction to Personal Computer Workstation (PCWS)," a publication entitled "Personal Computer Workstation User's Guide" is available at the NTSU University Store for $2.95. This guide documents all features of PCWS 1.2. Also, there is a file named README on the PCWS 1.2 diskette which provides basic information necessary to install and run PCWS. Once PCWS is running, an extensive help facility can be accessed by pressing ALT-H on your PC keyboard.

New Features of PCWS 1.2
Some of the new features of PCWS Version 1.20 are:

- Ability to redefine most keystrokes
- VT52/VT100 Terminal Emulation
- New Manual (SH21-0031)
- Personal Rexx Function Package
- Application Programming Interface
- DOS Device Driver
- IBM 3270 Entry Assist for 3270 Mode
- Enhanced File Transfer Facilities
- Re-Organized Setup Facility
- Enhanced EXEC Facility
- New HELP Facility

These new features are elaborated below.

Ability to Redefine Keys
PCWS now gives you the ability to redefine keystrokes in all terminal modes. Unlike most programs where one keystroke is substituted for another, here you can define the keystrokes differently in each terminal mode. A new keystroke profile, "PC#WS.KEY", is used to save the keystrokes.

VT52/VT100 Terminal Emulation
PCWS now emulates the popular DEC VT52 terminal or DEC VT100 terminal with VT102 extensions.

New Manual
The PCWS documentation has been taken out of the MUSIC/SP User's Guide and put into a manual of its own, the Personal Computer Workstation User's Guide (SH21-0031, available at the University Store).

Personal Rexx Function Package
PCWS now offers a communications function package for the popular "Personal Rexx" language from Mansfield Software Group Inc.

Application Programming Interface
There is a general Application Programming Interface which allows users to write applications in any language they choose and use PCWS as the communication line manager. The interface allows a program to set/query any PCWS parameter, send data, receive data, wait for events, and more.

DOS Device Driver
Provided with PCWS 1.20 is a DOS character device driver which enables any program to talk to PCWS using standard DOS file handles. Standard output can be redirected to PCWS (in turn the host system), and standard input can be redirected from PCWS.

IBM 3270 Entry Assist
Users now have the ability to use IBM's Entry Assist functions when using PCWS in 3270 mode. This package adds functions like Word Left, Word Right, Delete Word, Word Wrap, Margins, End of Line, and more. These features are provided directly in PCWS without any support from the host system or control unit. Entry Assist values can be saved in a new profile which be default is called "PC#WS.ENT".

Enhanced File Transfer Facilities
The file transfer programs, XTPC and XTMS, have been enhanced to fully support file names including path names. PC file names can now be up to a maximum length of 64 bytes. Wild card characters are now completely supported which means any number of "*" or "?" are allowed in the file specifications on both sides. A "-Comp" option has also been added to compress the data while sending a file. This reduces the transmission time for most files.

Re-Organized Setup Facility
The Setup Facility has been reorganized to logically group all functions on panels. Also many new options have been added to the facility.

Enhanced EXEC Facility
The EXEC facility has been enhanced to provide more functions and more commands. The error messages now provide better information as to the nature of the error. All messages are now numbered and can be checked in the PCWS User's Guide for more information.

Enhanced HELP Facility
The HELP facility has been completely changed. The new facility is completely driven from standard ASCII text files. It is a top-down menu system allowing the user to get help on most PCWS features.

New Utility on MUSIC
A new utility is now available to help BITNET users on MUSIC find out node names and their corresponding institutions. Typing FINDNODE string will show you all nodes on BITNET whose node names or institution names contain string. For more information type HELP FINDNODE while logged on to MUSIC.
Supercomputer User’s Group Forming

By Dave Molta (MOLTA@NTSU/VAX), Manager of Academic Computing

The Computing Center is in the process of organizing an informal Supercomputer User’s Group to explore current and future needs for high performance computing at NTSU. The impetus for the formation of this group is an agreement initiated by Dr. David Golden, Provost and Vice President for Academic Affairs, whereby the Houston Area Research Center (HARC) will provide NTSU with two hours of computing time on their NEC SX2 Supercomputer. Since this system is accessible by NTSU researchers via our existing interface to the Texas Higher Education Network (THEnet), we are interested in making this CPU time available to campus researchers. In order to take advantage of this opportunity, programs must be written in ANSI Standard Fortran. We are currently coordinating with HARC to provide a two-day training course on campus during the week of May 16.

The Supercomputer User’s Group will hold its first meeting as an informal lunchtime session at a time and location to be announced. Topics to be addressed at the initial session include methods for allocating the SX2 CPU time and present and future needs for high performance computing at NTSU. If you are interested in participating, please contact me at 565-2324 or via electronic mail. Once a specific time and location have been established, those parties expressing interest will be contacted. In addition, notices will be placed on the VAX-VMS, Research VAX, and MUSIC computing systems.

New Consultant Hired

Phanit Laosirihat has taken the part-time consulting position vacated by his fellow countryman, Panu Sititiwong. A former Help Desk employee, Phanit is ready to provide you with statistical/research help.

Its Userid Request Time Again!

By Carolyn Goodman, Computing Center Administrative Services

Summer I classes begin Monday, June 6, 1988. Faculty Members: It is not too early to think about classroom userid accounts for your Summer I classes; on the blue "F-020-01 NTSU Computing Center New USER-ID Request Form," please indicate if your class will be meeting both Summer I and II terms. A white Classroom ID Usage Projection form should be completed in addition to the blue request form. Come to the main Computing Center Office (Information Science Building, Room 119) should you require assistance in obtaining or completing these forms.

Jumping ahead a bit, it is also not too early to think about renewing your individual userid account, especially if you plan to be away from campus over the summer. Individual faculty and student userid accounts will be deactivated September 1, 1988. A pink "F-020-02 NTSU Computing Center USER-ID Change Form" should be completed early in order to secure access after September 1st. Do not delay or you could find yourself without access to your userid at a most inappropriate time.

Aman Presents Papers

Jim Aman, a part-time Academic Computing Services employee, presented papers at two conferences this semester. In January, at the Southwest Educational Research Assn. conference, he and Dr. Alan Moore of Educational Foundations presented a paper entitled "Effect of Non-Simple-Structure Variables on the Reliability of Factor Scales." In February, he and Dr. Cathleen Norris, of Computer Education and Cognitive Systems, presented a paper at the Texas Computer Education Assn. conference entitled "A Linked List Family Tree."

ICPSR Summer Program In Quantitative Methods

It’s getting close to summer, and that means it’s time to announce the ICPSR summer program. Each year the Inter-University Consortium for Political and Social Research (ICPSR) at the University of Michigan sponsors this program. Since NTSU is a member of the Consortium, graduate students and faculty members are eligible to attend the Summer Training Program. Graduate students can either take courses for credit or audit them. Faculty members will be considered Visiting Scholars.

The program is partitioned into two four-week sessions (June 27-July 22 & July 24-August 19), with instruction organized in lecture, seminar, and workshop formats. Additionally special workshops are offered that provide participants with an opportunity to examine the impact of various methodologies on specific substantive issues and that address the practical objectives of providing technical support for computing specialists and data librarians. The courses, taught by instructors from institutions across the U.S. and Canada, include:

- Basic Mathematics
- Mathematics for Social Scientists
- Logic of Data Analysis
- Implications of Sample Design for Data Analysis
- Introduction to Computing
- Introduction to Statistics and Data Analysis
- Introduction to Regression Analysis
- Multivariate Models
- Multivariate Statistical Methods
- Scheduling and Dimensional Analysis
- Large Research Issues
- Quantitative Historical Analysis

For more information, contact Dr. Rick Cupitt in the Political Science Department, EXT. 2318. He is the official NTSU ICPSR Representative and has brochures, posters, admission forms, etc.
National Conference on Educational Computing Hosted by NTSU Department

The Department of Computer Education and Cognitive Systems here at NTSU is hosting the 9th National Educational Computing Conference (NECC'88) at the Loews Anatole Hotel in Dallas on June 15-17, 1988. According to the "Advance Program" distributed for the event, the goals of NECC'88 are:

- To present a spectrum of major work regarding computers in instruction.
- To promote interaction among individuals at all levels who use various aspects of computing in education.
- To develop and coordinate the activities of the professional groups involved with computer uses in instruction.
- To produce a Proceedings documenting the status of educational computing.

For additional information on the conference or requests for registration information, please contact Dena Hilliard, departmental secretary for Computer Education and Cognitive Systems 817-565-3790.

BENCHMARKS FORUM

BENCHMARKS FORUM is intended to serve as a vehicle for answering questions that may be of general interests to the user community. If you have a question, please send electronic mail to the BENCHMARKS editor (AS04@NTSUVM1) or write it down and drop it by the Computing Center. Deadlines permitting, we will try to answer it in the next issue.

Question: How do I use random numbers in a program on the VAX?

Answer: You must use a system function named MTHSRANDOM. It must be given a seed and then it returns a real number between 0 and 1. More information on it is available in the RunTime Library Manual (type HELP MANUALS while logged-on to the VAX to find a copy).

Since Pascal is the most used language on the VAX, an example program in Pascal follows:

```pascal
PROGRAM Test(INPUT,OUTPUT);
VAR Seed : INTEGER;
    RandomNumber : REAL;

FUNCTION MTHSRANDOM(VAR Seed : INTEGER):REAL;
EXTERN;
BEGIN
    Seed := 45;
    RandomNumber := MTHSRANDOM(Seed);
    WRITELN(RandomNumber);
END.
```

Question: I am trying to edit a MUSIC file whose length is greater than 80 chars. How can I flip the screen to show the columns past 80? It used to be PF14, but that no longer works.

Answer: Under the MUSIC 1.1 editor, PF14 was set to WINDOW FLIP. To see the right-hand portion of a file, you can type WINDOW FLIP from the editor command line. You may set PF14 (or any other PF key for that matter) by using the define command. From the editor command line type:

```
DEFINE PF14 WINDOW FLIP
```

If this is a command you use frequently, you may want to create an EDITOR file so that this PF key can be set each time you edit a file. Create a file named EDITOR containing the following statements:

```
/INC *COM:EDITOR
DEFINE PF14 WINDOW FLIP
```

Of course, if you wish to always use the MUSIC 1.1 editor PF key definitions, you may follow the procedure outlined below:

In *GO mode type:

```
EDIT OLDEDIT
```

At the Editor command line type:

```
FILE EDITOR
```

You will now have a MUSIC save library file called EDITOR which contains definition statements for your editor PF keys.

Departmental Swap & Sell

FOR SALE

- DIABLO printer with Accoustical Coupler. Contact Janice Wilson in Management, Ext. 3140.
- XEROX Full Page Monitor for use with a desktop publishing system. Contact Sandy Beurrens in Education, Ext. 2942.
- XEROX Full Page Monitor for use with a desktop publishing system. Contact Claudia Lynch in the Computing Center, Ext. 2324.

Benchmarks Reader/User feedback is encouraged. Send all letters, suggestions, etc. to (AS04@NTSUVM1) or:

North Texas State University
The Computing Center
NT Station, Box 13495
Denton, Texas 76203
Attn: Benchmarks Editor
Version 2.0 of SPSS PC+ Is Here

The latest version of SPSS PC+ has been shipped and is available for installation on university-owned PCs under a site license agreement between NTSU and SPSS, Inc. There is a new default interface with this version, which will be nice for new users, although potentially a little disconcerting for those used to the standard SPSS/PC: prompt.

When V2.0 is loaded, you are presented with a blank LOG screen on the lower half of the display, with a new menu system above this system allows you to "pull down" commands for execution. In addition, there is a glossary and help facilities incorporated into this renovated SPSS REVIEW editor. Files and variables can also be selected from menu-generated lists.

Other modifications include some improvements to REPORT, allowing an AUTOMATIC specification to generate a quick report using default settings; a MODIFY VARS command to let you rename, reorder, or drop variables from the active file; some parameters added to the SET command, to configure your default working environment or use more than 25 lines on supported monitors; and a support for the SPSS RELIABILITY command.

Another significant addition to this package is the inclusion of support for PC local area networks, so that we can run SPSS PC+ in some of the PC LANs presently installed on campus. For more information or to obtain a copy of this new version, contact Scott Barber in the Computing Center (JSB 119, 565-2324).

Multiple Range Tests for Complex Designs Using SPSS-PC+ ONeway

By Scott Barber, Academic Computing Services Staff (AC10@NTSUVAX)

In the course of an analysis to compare a dependent variable across groups, after determining that the groups are not all equal (the overall F test), one usually wants to see which groups are significantly different from the others. Unless you have only one group variable and are executing a one-way analysis of variance, there is no procedure in SPSS-X or SPSS-PC+ for directly obtaining such "multiple range tests."

Nevertheless, with the use of the matrix input option of SPSS-PC+ and the ONeway procedure, you can "fool" SPSS-PC+ into computing range tests for more complex designs, including those with multiple groups, interaction terms, and repeated measures. Essentially, you build a matrix with vectors of the cell means, the number of observations per cell, and the error mean square and degrees of freedom. Reading this matrix into the ONeway procedure and labeling the cells for ease of interpretation produces the range tests desired.

An example using data from the SAS System for Linear Models manual illustrates this technique. In this experiment, three seed growth promoting methods are applied to five varieties of seed. Six pots were planted for each combination of METHOD by VARIETY combination, resulting in 90 pots.

Standard factorial ANOVA reveals that there is a significant interaction between these two variables on the dry matter yields of these plants after four weeks. By requesting the cell means from the ANOVA (or MANOVA) procedure, you obtain the information (along with the ANOVA table) for computing the multiple range tests. Table 1 presents these results.

To load the appropriate information into ONeway, use the MATRIX option of the DATA LIST procedure. When using the MATRIX option, it is recommended that you use the FREE format unless you are reading matrix output from one procedure back into the same procedure. For this example, the relevant commands to read the matrix data, label the cells, and produce the range tests are:

```
DATA LIST MATRIX FREE / YIELD
CELLS
VALUE LABELS CELLS 1 'VAR1M1' 2 'VAR2M1' 3 'VAR3M1' 4 'VAR4M1' 5 'VAR5M1' 6 'VAR1M2' 7 'VAR2M2' 8 'VAR3M2' 9 'VAR4M2' 10 'VAR5M2' 11 'VAR1M3' 12 'VAR2M3' 13 'VAR3M3' 14 'VAR4M3' 15 'VAR5M3'
DISKCOPY: supports the 3.5' 720K floppy diskette.
6666666666666666
21.77 21.85 23.13 25.97 22.33 15.08 15.23
15.45 13.50 19.23 18.42
19.92 17.32 14.83 12.55
19.650
75
END DATA
ONEWAY YIELD BY CELLS(1,15) / RANGES = SNK / OPTIONS = 68
```
Table 1: ANOVA YIELD BY METHCODE(1,3) VARIETY(1,5) /STAT 3.

CELL MEANS

<table>
<thead>
<tr>
<th>METHOD</th>
<th>VARIETY</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>YIELD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL POPULATION</td>
<td>18.44 (90)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VARIETY</td>
<td>1</td>
<td>21.77</td>
<td>21.85</td>
<td>23.13</td>
<td>25.97</td>
<td>22.33</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>15.08</td>
<td>15.23</td>
<td>15.45</td>
<td>15.50</td>
<td>19.22</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>18.42</td>
<td>19.92</td>
<td>17.32</td>
<td>14.83</td>
<td>12.55</td>
</tr>
</tbody>
</table>

ANALYSIS OF VARIANCE

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Sum of Squares</th>
<th>DF</th>
<th>Mean Square</th>
<th>F</th>
<th>Signif of F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>METHOD</td>
<td>964.537</td>
<td>6</td>
<td>160.756</td>
<td>8.181</td>
<td>.000</td>
</tr>
<tr>
<td>VARIETY</td>
<td>953.156</td>
<td>2</td>
<td>476.578</td>
<td>24.253</td>
<td>.000</td>
</tr>
<tr>
<td>2-way Interactions</td>
<td>11.380</td>
<td>4</td>
<td>2.845</td>
<td>.145</td>
<td>.965</td>
</tr>
<tr>
<td>METHOD VARIETY</td>
<td>374.488</td>
<td>8</td>
<td>46.811</td>
<td>2.382</td>
<td>.024</td>
</tr>
<tr>
<td>Explained</td>
<td>1339.025</td>
<td>14</td>
<td>95.645</td>
<td>4.867</td>
<td>.000</td>
</tr>
<tr>
<td>Residual</td>
<td>1473.767</td>
<td>75</td>
<td>19.650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2812.792</td>
<td>89</td>
<td>31.604</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This DATA LIST will read MATRIX data in FREE format, and will store the variable names YIELD and CELLS for use in the ONEWAY procedure later, even though these names do not relate directly to the raw data read by the DATA LIST. The first line of data is a vector of the cell frequencies for each of the 15 cells in the interaction between the METHOD and VARIETY variables. The second, third and fourth lines are the 15 cell means (if you run out of room on one line, you may continue on the next). The next two lines are the Residual Mean Square and its degrees of freedom.

By using OPTION 8 in the ONEWAY procedure, SPSS-PC+ can read data in this format. Also, it is helpful to label the cells for ease of interpretation of the range test output. In order for ONEWAY to pay attention to these labels, you must also use OPTION 6 in ONEWAY. The output from this procedure is similar to that obtained by running the standard multiple range test with the simpler one-way design. (Only partial output follows, appearing in Table 2. A subset of the variables not involved in significant differences was excluded to save space.)

Consult *Multiple Comparison* by Alan Klockars and Gilbert Sax (#61 of the Sage series on Quantitative Applications in the Social Sciences) for help in deciding which of the several available multiple range tests meets your needs and for which your data are appropriate.
Table 2: Multiple Range Test

Student-Newman-Keuls Procedure
Ranges for the .050 level -
2.83 3.38 3.72 3.95 4.14 4.28 4.41 4.52 4.61 4.69
4.77 4.84 4.90 4.96
The ranges above are table ranges.
The value actually compared with Mean(J)-Mean(I) is...
3.1345 * Range * Sqrt(1/N(I) + 1/N(J))
(*) Denotes pairs of subgroups significantly different at the .050 level

<table>
<thead>
<tr>
<th>Mean</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.4200</td>
<td>var1mtbc</td>
</tr>
<tr>
<td>19.2200</td>
<td>var5mtbb</td>
</tr>
<tr>
<td>19.9200</td>
<td>var2mtbc</td>
</tr>
<tr>
<td>21.7700</td>
<td>var1mtia</td>
</tr>
<tr>
<td>21.8500</td>
<td>var2mtia</td>
</tr>
<tr>
<td>22.3300</td>
<td>var5mtia</td>
</tr>
<tr>
<td>23.1300</td>
<td>var3mtia</td>
</tr>
<tr>
<td>25.9700</td>
<td>var4mtia</td>
</tr>
</tbody>
</table>

Once that has been done, you should check your list against the features of high-end word-processing systems such as Word Perfect and Microsoft Word. In many instances, these products will handle all the tasks you wish to accomplish. The May 1988 issue of BYTE magazine has an article entitled "Word Processors for Desktop Publishing" that discusses the abilities of 10 different word processing systems. This would be a good place to start in your assessment of word processors versus "true desktop publishing systems."

If you decide that you really do need a desktop publishing product, there are still many more decisions to be made. The remainder of this article is aimed at helping you to make these decisions.

Desktop Publishing Systems

There are many products on the market that claim to offer desktop publishing capabilities. Many are WYSIWIG (What-you-see-is-what-you-get) systems, although some are command driven (dot command sequences are imbedded within the text of the document). WYSIWIG systems are generally considered to be "state-of-the-art," and the presence or absence of this feature should be con-

Choosing a Desktop Publishing System

By Claudia Lynch, Benchmarks
Editor (AS04@NTSUVM)

One of the questions I am asked most frequently goes something like:

I am interested in purchasing some desktop publishing software, but I am unsure as to which one to buy. Can you help me?

I decided to write this article in an effort to save myself both time and

Desktop publishing is a fairly new microcomputer application. During its short existence, however, two products have become what could be called "industry standards." These products are Aldus Corp.'s PageMaker and Xerox Ventura Publisher ...

breath, and to provide a more comprehensive answer than I am usually able to give in person.

Establishing a Need for Desktop Publishing

The first thing I would advise a potential desktop publisher to do is to make sure they really need a desktop publishing product. This involves outlining the tasks you want to accomplish, both now and in the future.
both WYSIWYG systems. Any features noted lacking in either of these two products may be present by the time this answer is published, due to the constantly changing nature of the microcomputer software industry. Disclaimers aside, the following comparison and contrast of Ventura Publisher (Version 1.1) and PageMaker (Version 1.0) should be of some help to you in making your decision. Please note that, in an effort not to complicate things more than necessary, the version of PageMaker that is reviewed here is for use on an IBM PC.

Microcomputer Configuration

- Xerox Ventura Publisher will operate on an IBM PC, PC XT, PC AT, and compatibles. It requires a 20MB hard disk (at least), a 360K disk drive, 512K bytes of RAM (640K recommended), DOS 2.1 or later, and a graphics display adapter such as the Hercules or EGA cards.

- Aldus Corp.'s PageMaker was originally written to run on an Apple Macintosh. It has recently become available for IBM PCs. PageMaker requires an AT class machine with 512K bytes of RAM (640K recommended), a 20 MB hard disk (at least), a 360K disk drive, DOS 3.2 or later, and a graphics display adapter such as the Hercules or EGA cards. CGA cards are supported but not recommended due to the poor level of resolution that they provide.

PageMaker is bundled with a run-time version of Windows, however you can run it under a full version of Windows to take advantage of the task switching feature that would let you switch from PageMaker to Windows Paint or Draw and back again without quitting PageMaker.

Although technically not required, even the most casual use of either Ventura Publisher or PageMaker will require you to get a mouse or some sort of pointing device. Make sure the pointing device you choose was designed for use with your particular type of PC and is supported by your desktop publishing product.

Ventura Publisher and PageMaker both support a variety of full-page displays. You might want to consider the purchase of such a display if you are planning to spend the majority of your time doing desktop publishing. Make sure that you get a demonstration of the display using your desktop publishing product. Also ask to see what it looks like when you are not doing desktop publishing. The appearance of the screen in an environ-

Xerox Ventura Publisher takes a document-oriented approach to page layout. This makes it particularly good for producing lengthy publications

- Aldus Corp.'s PageMaker was originally written to run on an Apple Macintosh. It has recently become available for IBM PCs. PageMaker requires an AT class machine with 512K bytes of RAM (640K recommended), a 20 MB hard disk (at least), a 360K disk drive, DOS 3.2 or later, and a graphics display adapter such as the Hercules or EGA cards. CGA cards are supported but not recommended due to the poor level of resolution that they provide.

PageMaker is bundled with a run-time version of Windows, however you can run it under a full version of Windows to take advantage of the task switching feature that would let you switch from PageMaker to Windows Paint or Draw and back again without quitting PageMaker.

Although technically not required, even the most casual use of either Ventura Publisher or PageMaker will require you to get a mouse or some sort of pointing device. Make sure the pointing device you choose was designed for use with your particular type of PC and is supported by your desktop publishing product.

Ventura Publisher and PageMaker both support a variety of full-page displays. You might want to consider the purchase of such a display if you are planning to spend the majority of your time doing desktop publishing. Make sure that you get a demonstration of the display using your desktop publishing product. Also ask to see what it looks like when you are not doing desktop publishing. The appearance of the screen in an environ-

Text Formatting Features

- Xerox Ventura Publisher takes a document-oriented approach to page layout. This makes it particularly good for producing lengthy publications. Ventura offers multiple views of the page, including a reduced view, which shows a mock-up of the entire page, a normal view (100 percent), and an enlarged (200 percent) view. A facing-pages option, which allows you to see two consecutive pages in a publication at the same time, is also available.

A document produced with Ventura Publisher represents a composite of several files, including text, graphics, and style sheets.

Aldus Corp.'s PageMaker takes a page-oriented approach to page layout. This is particularly good for applications such as short newsletters, brochures, advertise-ments, and other publications that require high quality graphics and have pages of differing formats.

The Ventura document file does not actually hold text or graphics but rather holds pointers to the DOS files that hold the text or graphics and styles. This gives Ventura documents a dynamic nature. Their format can be changed instantaneously by calling in a new style sheet and their content can be immediately updated by
It is possible to create and edit text within Ventura, but extensive text editing should be done with a full featured word processing program. Ventura can format up to 50 pages per chapter in a 512K system and 150 pages per chapter in a 640K system. A "multiple chapter" function allows you to assemble many chapters into a very large publication. Ventura automatically renumbers pages and recreates the index and table of contents to reflect the sequence of chapters in the publication, and the entire publication can be printed at once.

- Aldus Corp.'s PageMaker takes a page-oriented approach to page layout. This is considered to be particularly good for applications such as short newsletters, brochures, advertisements, and other publications that require high quality graphics and have pages of differing formats. Multiple document views are available, including a full-page reduced view, 50 and 75 percent, actual size, and 200 percent enlargement.

An internal text editor is available, although extensive editing should be done with a full featured word processing program. PageMaker can theoretically accommodate a document up to 128 pages long. This would be impractical, however, due to the page-by-page orientation of the program. It can often take several seconds to redraw the screen after editing an image or turning the page.

Document Formats Supported
- Xerox Ventura Publisher will import text from WordStar, Microsoft Word, MultiMate, WordPerfect, XyWrite, and Xerox Writer. Standard text files in ASCII and DCA format are also supported.
- Aldus Corp.'s PageMaker will accept text files produced with WordStar, Microsoft Word, MultiMate, WordPerfect, XyWrite, and Windows Write. Standard text files in ASCII or DCA format are also supported.

Graphics
- Xerox Ventura Publisher will import Line art from GEM Paint and Draw program, Lotus 1-2-3, PC Paintbrush, AutoCAD, Mentor Graphics, and Video Show. It also supports numerous standard graphics formats including Hewlett-Packard Graphics Language, GSS's Computer Graphics Metafile, Macintosh Paint and PICT formats, and encapsulated PostScript (EPS). Ventura Publisher will incorporate images scanned with Microtek, Dest, Datacopy, Hewlett-Packard, Advanced Vision Research, and compatible scanners into Ventura Publisher documents. It does NOT support the TIFF format, discussed below.

Graphics functions within Ventura Publisher allow you to create lines, boxes, and circles. Once you have placed a graphic in a frame within your document, you can crop, scale, or pan it.
- Aldus Corp.'s PageMaker can import graphic images from AutoCAD, Windows Paint and Draw, Lotus 1-2-3, Symphony, PC Paintbrush, PC Paint, and In A Vision. It also supports scanned images stored in EPS or TIFF (Tag Image File) format. This last feature gives PageMaker the ability to incorporate professional-quality black-and-white photographs and, given a high-resolution output device, produce photos that are of equal quality to those seen in major news magazines.

Graphic functions available within PageMaker include tools for drawing lines, rectangles, circles, and ellipses. A wide variety of rule weights, borders and fill patterns are available and you can choose from among three types of double rules, one triple rule, five types of broken rules, eight different thicknesses of single rules, and a reverse (white on black - if your printer supports it) rule. You can also specify the degree of roundness of the corners in rounded rectangles.

Once your graphics images are placed on a page they cannot be edited. They can be cropped and scaled, however. Both proportional scaling and anamorphic (distorted) scaling are supported.

Printers
- Xerox Ventura Publisher supports PostScript, Interpress, Hewlett-Packard LaserJet Plus, Xerox 4045, and Cordata laser printers. Laser printers that use the LJaser card and the Xerox 4020 color inkjet printer are also supported. Some dot-matrix printers are supported but are not recommended due to their lack of speed and mediocrine resolution. Almost any font and point size available on the selected output device can be used with Ventura Publisher, and you don't have to reformat a document if you decide to change output devices.
- Aldus Corp.'s PageMaker supports any output device that runs under Microsoft Windows (PageMaker's operating environment). These devices include Hewlett-Packard's LaserJet, the Apple LaserWriter, and many others. A PageMaker document is tied to the printer when the document is created. If you change your target printer you have to reformat your document.

Cost
- Xerox Ventura Publisher Version 1.1 has a list price of $895.
- Aldus Corp.'s PageMaker Version 1.0 has a list price of $695.

Both products can be purchased for substantially less from mail order catalogues or discount software establishments such as Soft Warehouse.
Which one is for you?
Here is what some industry professionals recommend:

Jim Cuvuto of BYTE Magazine (December 1987, p. 176) puts it this way:

PageMaker is a very good buy if you need an easy-to-use product that can produce top-notch designs. It is particularly appropriate for newsletter editors and professionals who have had previous experience with graphic design.

For advanced desktop publishing users, the features and on-screen performance of Ventura Publisher would be hard to find anywhere else. This product will probably occupy the top spot in high-performance desktop publishing for some time to come.

"The possible applications of desktop publishing are far too broad for one package to be everyone's ideal."

The PC Magazine Editor's Choice (February 10, 1987, p. 124) was Ventura Publisher - #1; Aldus Corp.'s PageMaker PC edition - #2:

The possible applications of desktop publishing are far too broad for one package to be everyone's ideal. As a result, we have chosen two packages, each better suited for a particular kind of publication.

The package that is best suited for handling longer publications is Ventura Publisher from Xerox Corp. Users with typesetting and professional publishing backgrounds will appreciate the program's style sheets and its ability to control kerning and leading in decimal increments. Professional authors or publication departments that expect the manuscript to change throughout the production cycle will be grateful for the program's permanent link between the word processing file and the document file and its automatic numbering for sections, figure captions, and footnotes.

Ventura's incorporation of downloadable fonts for the Hewlett-Packard Laserjet Plus is especially good news for those of us who were concerned that we would have to invest in a PostScript printer to get more typefaces. This "plus" is related to one of Ventura's drawbacks, however: fonts take up memory, and so the more fonts you use, the smaller your document must be.

Our unofficial second choice is Aldus Corp.'s new PC edition of PageMaker. There were a few bugs in the prerelease version, most notably problems printing bit-mapped images on the laser printer. But PageMaker's intuitive menus and direct methods of text formatting, along with its wide range of fonts, line styles, and fill patterns, make it an ideal package for graphic artists and other nontraditional users. Its pasteboard work area makes it especially easy to experiment with different page layouts before deciding on a final design. We would recommend PageMaker for shorter documents or long documents that will go through minor revisions after page layout.

Further Assistance
A variety of organizations have emerged in the recent past that will be glad to assist you in the process of choosing a desktop publishing system. One of these is EPOCENTER at INFOMART in Dallas. It is billed by INFOMART as a "first-of-its-kind business resource that brings all the elements of electronic publishing together under one roof." The services that EPOCENTER provides are free. For more information call 214-746-INFO or 800-367-7100.

If you have a large budget, you might consider attending a workshop. Battelle Memorial Institute, for example, is offering a two-day workshop on Desktop Publishing in Dallas on July 14-15 for $695. For more information call 800-426-6762.

References
Cuvuto, James, "Three PC-based Desktop-Publishing Programs," BYTE, December 1987, pp. 169-176
JOIN - allows you to connect a drive to a directory on a separate drive. This permits access to files on more than one drive while using only one drive specifier.

SUBST - allows you to substitute a drive letter for a drive or directory.

The LABEL, TREE, and LINK commands were enhanced, but the primary change in DOS 3.1 over DOS 3.0 was the ability to use DOS commands in conjunction with IBM PC network disks, directories, and printers. These enhancements are essential to IBM network users.

DOS 3.2

DOS 3.2 contains the additional commands: REPLACE and XCOPY.

REPLACE - allows you to selectively change versions of DOS.

XCOPY - allows you to copy a whole directory including lower level subdirectories. It is a faster copy utility than the internal DOS COPY command, because it copies to RAM first and then the source media.

There are also some interesting enhancements to existing DOS commands. Here is a short synopsis:

COMMAND: allows you to set the size of the environment that DOS will utilize.

DISKCOMP: supports the 3.5" 720Kb diskette.

DISKCOPY: supports the 3.5" 720Kb diskette.

FORMAT: prevents you from formatting the default drive unless you have specifically entered the drive letter.

DOS 3.3

DOS 3.3, which was released in April of 1987, contains four new commands: APPEND, FASTOPEN, NLSFUNC, and CHCP.

APPEND - locates files outside of the current directories that have an extension name of either .BAT, .COM, and .EXE. It is very similar to the PATH command.

FASTOPEN - stores in memory (RAM) a list of the locations (addresses) of directories and files that were recently opened. When accessing a file FASTOPEN first searches memory; if the file is in the list, it is found very quickly.

NLSFUNC - (see the IBM DOS 3.3 manual to determine usage)

CHCP - (see the IBM DOS 3.3 manual to determine usage)

There are some interesting enhancements to existing the MS-DOS commands FORMAT, BACKUP, TIME, and DATE. Here is a general overview:

FORMAT: The FORMAT command now has the ability to format normal density 3 1/2" diskettes to 720K and high density 3 1/2" diskettes to 1.44Mb. To format a high density 3 1/2" diskette to 720K using a 3 1/2" high density drive use the following command:

```
FORMAT A:/N/9/T/80
```

To format a 5 1/4" disk to 360K in a 1.2Mb drive use the following command:

```
FORMAT A:/4
```

Otherwise, if your going format a high density 3 1/2" or a high density 5 1/4" disk and you are using a high density drive then type the following command:

```
FORMAT A:
```

BACKUP: The BACKUP command will backup files to an unformatted disk. To achieve this you must use the following option flag on your backup command. For instance if you wanted to backup all of the subdirectories on the hard disk to a floppy disk use the following command:

```
BACKUP C:A/S/F (where the /F specifies format)
```

TIME: The TIME command used to set the machines clock only for the period of time that the computer was on. Now after the TIME command is issued the computer's internal clock is permanently set to the time entered.

DATE: The DATE command used to set the machines clock only for the period of time that the computer was on. Now after the DATE command is issued the computer's internal clock is permanently set to the date entered.

If you enjoy playing with .BAT files, then you will love this next enhancement. The most useful enhancement to DOS 3.3 is the ability to run a .BAT file from within another .BAT file without executing COMMAND.COM. For example, in your AUTOEXEC.BAT you can invoke another .BAT file. When the second .BAT file finishes executing control is returned to your initial .BAT file. (AUTOEXEC.BAT)

NOTE: For a more detailed description on any of the commands or enhancements discussed here please refer to an MS or PC-DOS manual.

The Argument

A doctor, an architect, and a computer scientist were arguing about whose profession was the oldest. In the course of their arguments, they got all the way back to the Garden of Eden, whereupon the doctor said, "The medical profession is clearly the oldest, because Eve was made from Adam's rib, as the story goes, and that was a simply incredible surgical feat."

The architect did not agree. He said, "But if you look at the Garden itself, in the beginning there was chaos and void, and out of that, the Garden and the world was created. So God must have been an architect."

The computer scientist, who had listened to all of this said, "Yes, but where do you think the chaos came from?"
VAX File Protections

By Billy Barron, Acting VAX System Manager (BILLY@NTSUVA)

Occasionally in a research or class situation you will need to share your files with other users on the VAXcluster. Access to your files is controlled by setting the files' protection parameters. To see the current protection levels of your files, use the DIR/PROTECTION command. There will be four areas over to the right side similar to the following:

A.FILE;1 (RWED,RWED,RWED)

The first set of characters shows SYSTEM access (for backups, mail, etc.). The second set shows OWNER access (you). The third set shows group access (the people in your class if you have a class account). Group has no meaning on individual and faculty accounts. The fourth set shows world access (everybody else). R stands for read, W stands for write, E stands for execute, and D stands for delete. On A.FILE, therefore, the system, owner, and world have read, write, execute, and delete access to the file. The group has no access.

To change your files' protection, use the SET PROTECTION command. For example, to turn off all of world access (each command below should actually be contained on a single line) enter:

$ SET PROTECTION = (WORLD) filename.ext

To make a file world readable and executable enter:

$ SET PROTECTION = (WORLD:RE) filename.ext

You can replace WORLD in the above examples with SYSTEM, OWNER, or GROUP to change those access modes. It is recommended that you leave SYSTEM access as is, so that your directory can be backed up and so that you can receive MAIL. It is also recommended that you don't give delete or write access to GROUP or WORLD.

Please note that when you allow others access to your files, you need to also give them access to your directory so that they can find the files. The command you use is:

$ SET PROTECTION = (WORLD:R) [userid].DIR

You will need to replace userid with your directory name and replace WORLD with the correct access mode.

CPU Upgrade

By Billy Barron, Acting VAX System Manager (BILLY@NTSUVA)

Many of VAXA's CPU boards were upgraded by Digital Equipment Corp. (DEC) during Spring Break. These new boards should greatly improve the reliability of the machine. VAXB went through the same upgrade several months ago.

DEC performs these upgrades as part of NTSU's service contract on the VAXen. The VAX tape drive will be upgraded some time in April.

Public Directories

By Darrell Davis, VAX Operator (DARRELL@NTSUVA)

Many directories exist on the VAX that are open to you, the public. Some of the files are informational and some are public domain software. An entire disk drive is devoted to public software. This drive is DUAL. Before exploring this drive, let's make the job of directory traversal a little bit easier.

Directory Traversal

A very nice 'set default' program exists in one of the public directories. To copy the file to your directory, type (from the $ prompt):

COPY SYS$PUBLIC:DOWN.COM * *

This will copy the file DOWN.COM to your directory. Next you will need to define two symbols in your LOGIN.COM file. I have the following in my LOGIN file:

SD := @DOWN

† Runs DOWN.COM

UP := "SET DEFAULT ["†

† sets your default directory to the 'parent' of your present directory

Here is a quick run-down on using the above two commands. Suppose, for example, that you want to go move the directory:

DUAL:[PUBLIC,NETWORKS,BITNET]

Here are several possible methods:

SD SYS$BITNET

† this uses a logical discussed later in this article.
look at the DECUS files, set the default directory to the DECUS directory by typing:

SD DECUS

If you now type DIRECTORY you will get a list of hundreds of subdirectories. You could just start "SD'ing" to all the directories and looking around but first you may want to look at the directory VAX000 (type: SD VAX000). In this directory you will find a bunch of 'AAAAREADME' files. These files contain descriptions of most of the utilities, games, and other files that are contained in the DECUS directory. One more DECUS directory is DECUSC, containing many 'C' language routines. From the DECUS directory (DUA1:[DECUS]) type:

UP

SD DECUSC

Next we will look at the PUBLIC directory, so type: SD SYSSPUBLIC. This puts you in DUA1:[PUBLIC]. If you type DIRECTORY you will see a bunch of directories and files (including DOWN.COM). The PUBLIC directory is chock full of VAX related information and programs. Feel free to copy interesting files to your directory (type: COPY interesting.filename SYSSLOGIN)

Be careful not to exceed your disk quota (we really can't give you more quota to accommodate copying files from PUBLIC). Below are some interesting directories in DUA1:[PUBLIC]:

DUA1:[PUBLIC:CHUMOR]computer humor
DUA1:[PUBLIC:INFO]various informational files
DUA1:[PUBLIC:INFOVAX]INFO-VAX mailing list archives
DUA1:[PUBLIC:NETWORKS]network information, many subdirectories
DUA1:[PUBLIC:RTL]routines to access VAX Run-Time Libraries
DUA1:[PUBLIC:VAXHELP]VAX help (/)

The best way to learn about VAX/VMS is to study all the topics in HELP. The second best way is to spend some time looking at the files on the disk DUA1. Hopefully by doing the above you can gain a little insight to VAX operations and applications and maybe make your VAX experience more enjoyable.

VAX CLUSTER USAGE STATISTICS

<table>
<thead>
<tr>
<th>February Top Ten Programs: Frequency of Runs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>1. LOGINOUT</td>
</tr>
<tr>
<td>2. SET</td>
</tr>
<tr>
<td>3. DELETE</td>
</tr>
<tr>
<td>4. TYPE</td>
</tr>
<tr>
<td>5. EDT</td>
</tr>
<tr>
<td>6. DIRECTORY</td>
</tr>
<tr>
<td>7. SHOW</td>
</tr>
<tr>
<td>8. PASCAL</td>
</tr>
<tr>
<td>9. User Programs</td>
</tr>
<tr>
<td>10. SEARCH</td>
</tr>
</tbody>
</table>

Total 533266
VAX Notes

SHOWROUTE Command Renamed

The SHOWROUTE command has been renamed to FINDNODE. The FINDNODE command searches for BITNET nodenames or locations. This same command is available on MUSIC. Type HELP FINDNODE for more information.

PATH Command Updated

The PATH command to find routes between BITNET sites has been updated. It now runs much faster and uses the current nodename as the default if you only give it a single parameter. There is no longer any interactive mode for this utility. For more information type HELP PATH.

TELNET Utility Installed

A utility called TELNET has been installed that allows you to connect your terminal to an Internet host. Local hosts include the NBI and the Research VAX. Type HELP TELNET for more information.

Computer Joke of the Month

Q: How many IBM types does it take to change a light bulb?
A: 100. Ten to do it, and 90 to write document number GC7500439-001, Multitasking Incandescent Source System Facility, of which 10% of the pages state only "This page intentionally left blank," and 20% of the definitions are of the form ".of 4; of A: consists of sequences of non-blank characters separated by blanks."
PROJECT EAGLE: The NTSU and GTE Voice Response Project

By Coy Hoggard, Manager, Administrative Information Systems

NTSU has entered into a five year agreement with General Telephone and Electric (GTE) to develop five voice response applications for the higher education market. For these applications, touch-tone telephones will be used as data collection and query devices into automated administrative information systems. By working with GTE and functioning as something of a laboratory for the development and use of these products, NTSU will receive significant benefits in the form of free use and eventual ownership of the products.

The product which GTE is developing is called, generically, "UCAP," which stands for "University and College Applications Processor." UCAP consists of both the hardware and software to allow end-users to access computer-based information systems using a touch-tone telephone. The hardware consists of a mini computer, appropriate telephone equipment, and the software required to allow the mini computer to access the administrative mainframe computer for purpose of electronic information exchange. All the components of UCAP are proprietary to GTE.

The entire five-year project is called "Project Eagle." The first application of Project Eagle is the Telephone Registration (Teleregistration) application. Teleregistration allows students to use touch-tone telephones to call into the administrative mainframe computer via UCAP to schedule classes. There are a series of computer generated voice instructions that guide the student through each step of the process. Phase I of Teleregistration consists of the scheduling component. Work began on this project in August, 1987. This spring, College of Education majors are serving as a pilot test group for the implementation of Phase I of Teleregistration. Dr. Betty Mason, Director of Student Services, has been named Academic Coordinator for the project. These students (College of Education majors) will use Teleregistration to early register for their Summer and Fall, 1988 classes in lieu of using the traditional "bubble sheet" method. According to Joneel Harris, Registrar and Teleregistration Project Manager, packets containing instructions, worksheets, and class schedules for Summer and Fall, 1988 semesters have been mailed to 3,678 students whose majors are in the College of Education. Ms. Harris estimates that at least 2,300 of these students will actually use the system this spring.

Production Services Group Formed

By Coy Hoggard, Manager, Administrative Information Systems

The Data Entry, Report Preparation/Distribution, and Data Control functions have recently been consolidated into a single group within Computer Operations. The new section is called "Production Services." The Production Services Supervisor is Betty Grise, who formerly supervised the Data Entry and Report Processing/Distribution functions. Specifics of the organization of the Production Services section are as follows:

- The Production Services Supervisor will have general management and supervisory responsibility for the section. Betty Grise has been appointed to the position of Production Services Supervisor. Betty reports to Rabon Sanders, Computer Operations Manager.

- The Data Entry section is under the general supervision of the Production Services Supervisor, with daily work assignments being coordinated by Rachel Dowdy, who has the title "Data Entry Coordinator." The Data Entry staff currently consists of Kay Prewitt, Nadine Yeager, Kathy Brush, Renate Roberts, and Judy Stensgard.

- The Report Preparation/Delivery function is now a part of the Production Services section and continues to be staffed primarily by student workers. Current staff members in this area are Rick Burley, Mike Herndon, and Kenneth La Rue.

Wanted: Telex Terminals

The Computing Center has a need for additional Telex terminals. Any department that has terminals that they wish to transfer, sell, or trade, contact Coy Hoggard or Stanley Sawyer at extension 2324.
TRANSITIONS

By Doug Heruska, Documentation Specialist

The Administrative Information Systems group has been involved in a period of dynamic change, as can be seen from the preceding articles in this section. In addition to staffing changes discussed elsewhere, the following people have contributed to the current dynamic nature of this group.

Bill Shumate, of the General Systems Team, decided to leave the computer world and venture into the restaurant business. We wish Bill the best of luck in his new undertaking and expect to be eating some good Mexican food in the near future.

Nancy Fisher, a local Denton resident who had been working for Moore Business Systems, has joined the General Systems Team in Bill Shumate’s open position. Nancy has more than 10 years experience in data processing and is familiar with NTSU, since she is a former graduate and part time instructor in the BCIS department.

The Fiscal Team’s Bob Hamilton has changed his status from part time to full time Programmer.

Benny Pena is a recent addition to the Student Records area. Benny is a recent graduate of West Texas State University, with a Computer Information Systems degree. He started in January as a Programmer.

VACANT POSITIONS

Administrative Information Systems has the following vacant positions:

Office Automation Analyst: The person filling this position will be responsible for supporting "end-user computing" activities in a predominantly IBM-compatible microcomputer environment. Candidates for this position must have extensive experience with the MS/PC-DOS operating system and currently popular software such as Lotus 1-2-3, dBASE III, RBase, and WordPerfect. Applicants should also be familiar with microcomputer local area networks, especially Novell’s Netware Operating System, and with micro-to-mainframe links. The position requires excellent written and verbal communications skills as well as excellent organizational abilities. Minimum requirements include five years of applicable computer experience (including two years as a Programmer/Analyst, Systems Analyst, or equivalent) and a bachelor’s degree. An advanced degree or additional experience is desirable.

The following Programmer and Programmer/Analyst positions will do systems analysis, design, and development work as well as system and program maintenance. A bachelor’s degree and experience with OS/MVS operating system, COBOL programming language, and ADABAS data base management system software is required or highly desirable for all of these positions:

Programmer/Analyst - Voice Response Applications: Will work on development of applications combining the use of touch-tone telephone technology (with voice response) with traditional electronic data processing. Touch-tone telephones will be used as data collection and query (with voice response) devices. Three to five years experience as a program-

mer or analyst in a medium or large scale computing environment is required.

Programmer/Analyst - Payroll/Personnel Data Systems: Will work on development of new Payroll/Personnel system to support NTSU and TCOM (Texas College of Osteopathic Medicine). Five or more years of applicable experience as a programmer or analyst is required.

Programmer/Analyst - Fiscal Data Systems: Will work on software maintenance and development projects primarily in support of student accounting functions. Three to four years of applicable experience as a programmer or analyst is required.

Programmer/Analyst - Student Records Data Systems: Will work on software maintenance and development projects primarily in support of student records applications. Three to four years of applicable experience as a programmer or analyst is required.

Programmers (3) - Student Records Data Systems: Will work on software maintenance and development projects primarily in support of student records applications. One year of applicable programming experience is required.

Programmer - Fiscal Data Systems: Will work on software maintenance and development projects primarily in support of student accounting functions. One year of applicable programming experience is required.

Programmer - General Data Systems: Will work on software maintenance and development projects in support of Financial Aid, Advancement, and other office functions. Two years of applicable programming experience is required.

Resumes and/or inquiries regarding these positions should be directed to the NTSU Personnel Office, P.O. Box 13497 NTSU, Denton, TX 76201, or call (817) 565-2281.

North Texas State University is an equal opportunity, affirmative action employer.
Mainframe Performance Statistics

<table>
<thead>
<tr>
<th>CPU</th>
<th>SYSTEM</th>
<th>Scheduled Operating Hours</th>
<th>Planned Maintenance Hours</th>
<th>Planned Production Hours</th>
<th>Unplanned Maintenance Hours</th>
<th>Production Hours Achieved</th>
<th>System Uptime</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACAD</td>
<td>VM/SP3</td>
<td>744</td>
<td>0.00</td>
<td>744.00</td>
<td>0.00</td>
<td>744.00</td>
<td>100.0%</td>
</tr>
<tr>
<td>ACAD</td>
<td>MUSIC/SP</td>
<td>744</td>
<td>25.28</td>
<td>718.72</td>
<td>23.50</td>
<td>695.22</td>
<td>96.7%</td>
</tr>
<tr>
<td>ACAD</td>
<td>MVS/JES2</td>
<td>744</td>
<td>0.00</td>
<td>744.00</td>
<td>0.00</td>
<td>744.00</td>
<td>100.0%</td>
</tr>
<tr>
<td>ACAD</td>
<td>COMPLETA</td>
<td>744</td>
<td>0.00</td>
<td>744.00</td>
<td>2.80</td>
<td>741.20</td>
<td>99.6%</td>
</tr>
<tr>
<td>ADMN</td>
<td>MVS/JES2</td>
<td>744</td>
<td>0.00</td>
<td>744.00</td>
<td>0.20</td>
<td>743.80</td>
<td>99.9%</td>
</tr>
<tr>
<td>ADMN</td>
<td>COMPLETA</td>
<td>275</td>
<td>0.00</td>
<td>275.00</td>
<td>3.08</td>
<td>271.92</td>
<td>98.9%</td>
</tr>
<tr>
<td>ADMN</td>
<td>ADABASA</td>
<td>744</td>
<td>22.07</td>
<td>721.93</td>
<td>25.41</td>
<td>696.52</td>
<td>96.5%</td>
</tr>
</tbody>
</table>

System Uptime = (Production Hours Achieved) / (Planned Production Hours)

Production Hours Achieved = (Planned Production) – (Unplanned Maintenance)

Scheduled Operating Hours = (Planned Maintenance) + (Planned Production)

MUSIC/SP Planned Maintenance Hours include 19.56 hours for system backup and 5.72 hours for VM/SP3 system backup.

ADABASA’S Planned Maintenance Hours include 22.07 hours for system backup.

The ACAD CPU achieved 100% uptime; the NAS/7360 DASD achieved 100% uptime; the NAS/7380 DASD achieved 100% uptime.

ACAD CPU:

Miscellaneous
1. COMPLETA system maintenance. 2.60 HOURS
2. MUSIC/SP upgrade to Version 1.2. 22.50

TOTAL: 25.10 HOURS

GRAND TOTAL FOR ACAD: 25.10 HOURS

ADMN CPU:

Miscellaneous
1. MVS/JES2 system tuning/improvements. 0.18 HOURS
2. COMPLETA File Maintenance. 27.65
3. COMPLETA system tuning/improvements. 2.38
4. COMPLETA system down to process single jobs. 0.70

TOTAL: 30.91 HOURS

GRAND TOTAL FOR ADMN: 30.91 HOURS

NAS/7380 DASD achieved 100% uptime. Lost productivity is calculated as the greatest amount of elapsed time that any one of the production systems was unavailable for scheduled operation. Lost productivity hours were contributed to by the key causes appearing in the table below.
The following is a summary of NAS/8083 Dual Processor Performance Statistics for February:

<table>
<thead>
<tr>
<th>CPU</th>
<th>SYSTEM</th>
<th>Scheduled Operating Hours</th>
<th>Planned Maintenance Hours</th>
<th>Planned Production Hours</th>
<th>Unplanned Maintenance Hours</th>
<th>Production Hours Achieved</th>
<th>System Uptime</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACAD</td>
<td>VM/SP3</td>
<td>696</td>
<td>0.00</td>
<td>696.00</td>
<td>0.30</td>
<td>695.70</td>
<td>99.93%</td>
</tr>
<tr>
<td>ACAD</td>
<td>MUSIC/SP</td>
<td>696</td>
<td>35.55</td>
<td>662.45</td>
<td>2.05</td>
<td>660.40</td>
<td>99.77%</td>
</tr>
<tr>
<td>ACAD</td>
<td>MVS/JES2</td>
<td>696</td>
<td>0.00</td>
<td>696.00</td>
<td>2.52</td>
<td>693.48</td>
<td>99.96%</td>
</tr>
<tr>
<td>ACAD</td>
<td>COMPLETEA</td>
<td>696</td>
<td>0.00</td>
<td>696.00</td>
<td>5.44</td>
<td>690.56</td>
<td>99.20%</td>
</tr>
<tr>
<td>ADMN</td>
<td>MVS/JES2</td>
<td>696</td>
<td>0.00</td>
<td>696.00</td>
<td>3.92</td>
<td>692.08</td>
<td>99.44%</td>
</tr>
<tr>
<td>ADMN</td>
<td>COMPLETEA</td>
<td>269</td>
<td>0.00</td>
<td>269.00</td>
<td>0.67</td>
<td>268.33</td>
<td>98.88%</td>
</tr>
<tr>
<td>ADMN</td>
<td>ADABASA</td>
<td>696</td>
<td>20.15</td>
<td>675.85</td>
<td>4.17</td>
<td>671.68</td>
<td>99.44%</td>
</tr>
</tbody>
</table>

MUSIC/SP Planned Maintenance Hours include 20.17 hours for system backup and 13.38 hours for VM/SP3 system backup.

ADABASA's Planned Maintenance Hours include 20.15 hours for system backup.

The ACAD CPU achieved 100% uptime; the NAS/7360 DASD achieved 100% uptime; the NAS/7380 DASD achieved 100% uptime. The ADMN CPU achieved 100% uptime; the NAS/7360 DASD achieved 100% uptime; the NAS/7380 DASD achieved 100% uptime.

Lost productivity is calculated as the greatest amount of elapsed time that any one of the production systems was unavailable for scheduled operation. Lost productivity hours were contributed to by the key causes appearing in the table below.

ACAD CPU:

Miscellaneous
1. COMPLETEA system maintenance. 2.31 HOURS
2. MVS/JES2 system tuning/improvements. 1.61 HOURS
3. MUSIC/SP system failures. 1.59 HOURS
4. MUSIC/SP system tuning/improvements. 0.95 HOURS

Total: GRAND TOTAL FOR ACAD 6.46 HOURS

ADMN CPU:

Miscellaneous
1. Shut down operating systems for scheduled equipment maintenance. 4.17 HOURS
2. COMPLETEA system down to process single jobs. 0.67 HOURS

Total: GRAND TOTAL FOR ADMN: 4.84 HOURS

The following is a summary of NAS/8083 Dual Processor Performance Statistics for March:

<table>
<thead>
<tr>
<th>CPU</th>
<th>SYSTEM</th>
<th>Scheduled Operating Hours</th>
<th>Planned Maintenance Hours</th>
<th>Planned Production Hours</th>
<th>Unplanned Maintenance Hours</th>
<th>Production Hours Achieved</th>
<th>System Uptime</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACAD</td>
<td>VM/SP3</td>
<td>744</td>
<td>3.45</td>
<td>740.55</td>
<td>0.18</td>
<td>740.37</td>
<td>99.99%</td>
</tr>
<tr>
<td>ACAD</td>
<td>MUSIC/SP</td>
<td>744</td>
<td>42.06</td>
<td>701.94</td>
<td>2.56</td>
<td>699.38</td>
<td>99.66%</td>
</tr>
<tr>
<td>ACAD</td>
<td>MVS/JES2</td>
<td>744</td>
<td>3.92</td>
<td>740.08</td>
<td>0.78</td>
<td>739.30</td>
<td>99.99%</td>
</tr>
<tr>
<td>ACAD</td>
<td>COMPLETEA</td>
<td>744</td>
<td>4.05</td>
<td>739.95</td>
<td>3.16</td>
<td>736.79</td>
<td>99.66%</td>
</tr>
<tr>
<td>ADMN</td>
<td>MVS/JES2</td>
<td>744</td>
<td>2.68</td>
<td>741.32</td>
<td>5.15</td>
<td>736.17</td>
<td>99.33%</td>
</tr>
<tr>
<td>ADMN</td>
<td>COMPLETEA</td>
<td>303</td>
<td>0.00</td>
<td>303.00</td>
<td>0.42</td>
<td>302.58</td>
<td>98.99%</td>
</tr>
<tr>
<td>ADMN</td>
<td>ADABASA</td>
<td>744</td>
<td>21.09</td>
<td>722.10</td>
<td>10.38</td>
<td>711.72</td>
<td>98.65%</td>
</tr>
</tbody>
</table>
MUSIC/SP Planned Maintenance Hours include 24.23 hours for system backup and 14.28 hours for VM/SP3 system backup.

ADABASA'S Planned Maintenance Hours include 19.05 hours for system backup.

The ACAD CPU achieved 100% uptime; the NAS/7360 DASD achieved 100% uptime; the NAS/7380 DASD achieved 100% uptime. The ADMN CPU achieved 100% uptime; the NAS/7360 DASD achieved 100% uptime; the NAS/7380 DASD achieved 100% uptime.

Lost productivity is calculated as the greatest amount of elapsed time that any one of the production systems was unavailable for scheduled operation. Lost productivity hours were contributed to by the key causes appearing in the table at right.

<table>
<thead>
<tr>
<th>ACAD CPU:</th>
<th>CPU, Tape, and Disk Subsystems (NAS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Periodic Maintenance on ACAD CPU.</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
</tr>
<tr>
<td>1. COMPLETA system maintenance.</td>
<td>2.16</td>
</tr>
<tr>
<td>2. MUSIC/SP system failures</td>
<td>2.54</td>
</tr>
<tr>
<td>3. MUSIC/SP system tuning/improvements.</td>
<td>0.67</td>
</tr>
<tr>
<td>TOTAL:</td>
<td>5.37 HOURS</td>
</tr>
<tr>
<td>GRAND TOTAL FOR ACAD:</td>
<td>9.42 HOURS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADMN CPU:</th>
<th>CPU, Tape, and Disk Subsystems (NAS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Periodic Maintenance on ACAD CPU.</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
</tr>
<tr>
<td>1. COMPLETA system failures.</td>
<td>0.42</td>
</tr>
<tr>
<td>2. ADABASA file maintenance.</td>
<td>4.20</td>
</tr>
<tr>
<td>3. MVS/JES2 system tuning/improvements.</td>
<td>6.18</td>
</tr>
<tr>
<td>TOTAL:</td>
<td>10.80 HOURS</td>
</tr>
<tr>
<td>GRAND TOTAL FOR ADMN:</td>
<td>13.65 HOURS</td>
</tr>
</tbody>
</table>

DISK BACKUP SCHEDULES

OS/MVS Backup Schedule

OS/MVS disk packs (academic and administrative) are backed up daily, Tuesday through Saturday, from 4:630 a.m., and Sunday from Midnight to 3 a.m. A backup of all the operating systems on the NAS CPU and their contents is done once every two weeks at some low activity period over a weekend.

MUSIC/SP Backup Hours

A message will be sent to all users signed on to MUSIC/SP approximately 10 minutes before backups are begun. It will be in the form "**MUSIC SHUT DOWN AT xxxx AM SCHEDULED BACKUP**." To find out the backup hours while signed on to MUSIC/SP, enter HELP HOURS.

The following backup schedule is currently in effect:

- Tuesday 3 a.m. (for about 3 hours)
- Weekly backup
- Wednesday - Saturday 4 a.m. (for about 2 hours) Daily backup
- Saturday Midnight (for about 2 hours) Daily backup

PHOENIX Backup Hours

PHOENIX is backed up weekly on Sunday night. The backup begins at midnight and lasts for approximately 30 minutes.

VAX Backup Schedule

Incremental backups of the VAXcluster are performed Monday through Thursday at 3 a.m. Users do not have to log-off, but any files that are open at the time of the backup will NOT be backed up.

Full backups of both systems are done every Friday beginning at 8 a.m. These generally will take all day to complete. Again, users do not have to log-off, but any files that are open will not be backed up.

A "Stand Alone" backup of the system disk is done once a month. This procedure makes a copy of the system disk that can be used to restore its contents if the disk is completely destroyed. The system will be shut-down for this. Watch the system log-on message for specific times and dates.

NOTE: Requests for restoration of files should be made via MAIL to the username OPERATOR. Your file can only be restored if it existed before the last backup was done.
ACADemic (NAS) Program Hit Parade

<table>
<thead>
<tr>
<th>January Top Ten Programs: Frequency Of Runs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program</td>
</tr>
<tr>
<td>1. IEBGENER</td>
</tr>
<tr>
<td>2. SCRIPT</td>
</tr>
<tr>
<td>3. IKJEFT01</td>
</tr>
<tr>
<td>4. SASLPA</td>
</tr>
<tr>
<td>5. PTPCH</td>
</tr>
<tr>
<td>6. SPSSX</td>
</tr>
<tr>
<td>7. IEWL</td>
</tr>
<tr>
<td>8. PGM = *.DD</td>
</tr>
<tr>
<td>9. IEFBR14</td>
</tr>
<tr>
<td>10. IKFCBL00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>January Top Ten Programs: CPU Seconds Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program</td>
</tr>
<tr>
<td>1. SASLPA</td>
</tr>
<tr>
<td>2. SPSSX</td>
</tr>
<tr>
<td>3. SCRIPT</td>
</tr>
<tr>
<td>4. GIMSP</td>
</tr>
<tr>
<td>5. FATS</td>
</tr>
<tr>
<td>6. PGM = *.DD</td>
</tr>
<tr>
<td>7. PTPCH</td>
</tr>
<tr>
<td>8. IKJEFT01</td>
</tr>
<tr>
<td>9. FDR</td>
</tr>
<tr>
<td>10. ADARUN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>February Top Ten Programs: Frequency Of Runs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program</td>
</tr>
<tr>
<td>1. IEWL</td>
</tr>
<tr>
<td>2. PGM = *.DD</td>
</tr>
<tr>
<td>3. IKFCBL00</td>
</tr>
<tr>
<td>4. PTPCH</td>
</tr>
<tr>
<td>5. SCRIPT</td>
</tr>
<tr>
<td>6. IEBGENER</td>
</tr>
<tr>
<td>7. SASLPA</td>
</tr>
<tr>
<td>8. SPSSX</td>
</tr>
<tr>
<td>9. IEV90</td>
</tr>
<tr>
<td>10. IKJEFT01</td>
</tr>
</tbody>
</table>
February Top Ten Programs: CPU Seconds Used

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
<th>CPU Seconds</th>
<th>Percent of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGM = *.DD</td>
<td>Compiled Program</td>
<td>40952</td>
<td>29.1</td>
</tr>
<tr>
<td>SASLPA</td>
<td>SAS</td>
<td>27621</td>
<td>19.6</td>
</tr>
<tr>
<td>SCRIPT</td>
<td>Waterloo/SCRIPT</td>
<td>11236</td>
<td>8.0</td>
</tr>
<tr>
<td>GIMSP</td>
<td>MVS Maintenance Utility</td>
<td>10700</td>
<td>7.6</td>
</tr>
<tr>
<td>SPSSX</td>
<td>SPSSX</td>
<td>9872</td>
<td>7.0</td>
</tr>
<tr>
<td>IKFBL00</td>
<td>VS COBOL Compiler</td>
<td>8315</td>
<td>5.9</td>
</tr>
<tr>
<td>PTPCH</td>
<td>Dataset Lister</td>
<td>5838</td>
<td>4.2</td>
</tr>
<tr>
<td>ISTINM01</td>
<td>VTAM Utility</td>
<td>2711</td>
<td>1.9</td>
</tr>
<tr>
<td>FATS</td>
<td>Tape Verification Program</td>
<td>2442</td>
<td>1.7</td>
</tr>
<tr>
<td>RESOLVE</td>
<td>System Programming Tool</td>
<td>2334</td>
<td>1.7</td>
</tr>
</tbody>
</table>

March Top Ten Programs: Frequency Of Runs

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
<th>Number of Runs</th>
<th>Percent of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEWL</td>
<td>Linkage Editor</td>
<td>15876</td>
<td>16.8</td>
</tr>
<tr>
<td>PGM = *.DD</td>
<td>Compiled Program</td>
<td>15369</td>
<td>16.3</td>
</tr>
<tr>
<td>IKFBL00</td>
<td>VS COBOL Compiler</td>
<td>14096</td>
<td>14.9</td>
</tr>
<tr>
<td>IEBGENER</td>
<td>IBM Utility</td>
<td>7793</td>
<td>8.3</td>
</tr>
<tr>
<td>IEBPTPCH</td>
<td>IBM List Utility</td>
<td>6110</td>
<td>6.5</td>
</tr>
<tr>
<td>SCRIPT</td>
<td>Waterloo/SCRIPT</td>
<td>5293</td>
<td>5.6</td>
</tr>
<tr>
<td>PTPCH</td>
<td>Dataset Lister</td>
<td>4934</td>
<td>5.2</td>
</tr>
<tr>
<td>IEV90</td>
<td>Assembler H</td>
<td>3904</td>
<td>4.1</td>
</tr>
<tr>
<td>ADARUN</td>
<td>ADABAS Utility Module</td>
<td>3581</td>
<td>3.8</td>
</tr>
<tr>
<td>SPSSX</td>
<td>SPSSX</td>
<td>3253</td>
<td>3.4</td>
</tr>
</tbody>
</table>

March Top Ten Programs: CPU Seconds Used

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
<th>CPU Seconds</th>
<th>Percent of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SASLPA</td>
<td>SAS</td>
<td>134680</td>
<td>57.6</td>
</tr>
<tr>
<td>PGM = *.DD</td>
<td>Compiled Program</td>
<td>25475</td>
<td>10.9</td>
</tr>
<tr>
<td>SCRIPT</td>
<td>Waterloo/SCRIPT</td>
<td>16018</td>
<td>6.8</td>
</tr>
<tr>
<td>IKFBL00</td>
<td>VS COBOL Compiler</td>
<td>14926</td>
<td>6.4</td>
</tr>
<tr>
<td>SPSSX</td>
<td>SPSSX</td>
<td>9144</td>
<td>3.9</td>
</tr>
<tr>
<td>PTPCH</td>
<td>Dataset Lister</td>
<td>5834</td>
<td>2.5</td>
</tr>
<tr>
<td>ADARUN</td>
<td>ADABAS Utility Module</td>
<td>3587</td>
<td>1.5</td>
</tr>
<tr>
<td>IEV90</td>
<td>Assembler H</td>
<td>2903</td>
<td>1.2</td>
</tr>
<tr>
<td>IEWL</td>
<td>Linkage Editor</td>
<td>2526</td>
<td>1.1</td>
</tr>
<tr>
<td>ISTINM01</td>
<td>VTAM Utility</td>
<td>2504</td>
<td>1.1</td>
</tr>
</tbody>
</table>

The programs listed in this section were used the most frequently on the NAS CPU during the months of January, February, and March, 1988.

Please Note that ACAD is the official designation of the part of the NAS/8083 CPU that is dedicated to faculty and student use. The portion of the computer reserved for University administrative purposes is termed ADMN.
Get a Subscription to BENCHMARKS

Benchmarks is a vital link between the NTSU Computing Center and the users of our facilities. It is important for all users of the computing facilities to maintain a file of these newsletters because they contain materials which will periodically update existing documents as well as information and suggestions on uses of OS/MVS, MUSIC/SP, the VAXcluster, Microcomputers, and other resources available to NTSU students and faculty. To facilitate the dispersal of Benchmarks, ***FREE*** subscriptions are available. To receive yours, send the following information to us either by snail mail (the post office or campus mail) or electronically, to the UserID AS04 on MUSIC, VMS, or CMS.

Name:__

Mailing Address:__

__

PLEASE GIVE A CAMPUS ADDRESS (NOT BOX) IF POSSIBLE! -
It's Cheaper !!

____ Renewal ____ Change of Address ____ Cancel Subscription

North Texas State University Computing Center

A009AS04.VP Revised 9/87